uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of amorphous Zr-Si-C thin films deposited by DC magnetron sputtering
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. College of Construction Engineering, Jilin University, Changchun 130026, People's Republic of China.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Show others and affiliations
2015 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 261, 227-234 p.Article in journal (Refereed) Published
Abstract [en]

Zr-x(SiyC1-y)(1-x) films with different Si/C atomic ratios and Zr contents were deposited using non-reactive dc-magnetron co-sputtering. All films exhibited an X-ray amorphous structure with a complex distribution of chemical bonds. The presence of Zr in the films reduced the amount of C-C and Si-C bonds but favored the formation of Zr-C and Zr-Si bonds. The mechanical and electrical properties were dependent on the bond distribution in the amorphous structure and a linear relationship between film hardness and the relative amount of Si-C bonds was observed. The addition of Zr in films also gave rise to an increase in metallic character resulting in a lower electrical resistivity. Analysis of the tribofilm showed that a low friction coefficient was favored by the formation of a lubricating a-C layer and that the formation of zirconium and silicon oxides in the more Zr-rich films has a detrimental effect on the tribological performance. (C) 2014 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
2015. Vol. 261, 227-234 p.
Keyword [en]
Zirconium silicon carbide, Chemical bond structure, Mechanical properties, Tribofilm, Electrical resistivity
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:uu:diva-245365DOI: 10.1016/j.surfcoat.2014.11.024ISI: 000348255500031OAI: oai:DiVA.org:uu-245365DiVA: diva2:791156
Available from: 2015-02-26 Created: 2015-02-26 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Synthesis, Characterization, and Evaluation of Ag-based Electrical Contact Materials
Open this publication in new window or tab >>Synthesis, Characterization, and Evaluation of Ag-based Electrical Contact Materials
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ag is a widely used electrical contact material due to its excellent electrical properties. The problems with Ag are that it is soft and has poor tribological properties (high friction and wear in Ag/Ag sliding contacts). For smart grid applications, friction and wear became increasingly important issues to be improved, due to much higher sliding frequency in the harsh operation environment. The aim of this thesis is to explore several different concepts to improve the properties of Ag electrical contacts for smart grid applications.

Bulk Ag-X (X=Al, Sn In) alloys were synthesized by melting of metals. An important result was that the presence of a hcp phase in the alloys significantly reduced friction coefficients and wear rates compared to Ag. This was explained by a sliding-induced reorientation of easy-shearing planes in the hexagonal structure. The Ag-In system showed the best combination of properties for potential use in future contact applications. 

This thesis has also demonstrated the strength of a combinatorial approach as a high-throughput method to rapidly screen Ag-based alloy coatings. It was also used for a rapid identification of optimal deposition parameters for reactive sputtering of a complex AgFeO2 oxide with narrow synthesis window. A new and rapid process was developed to grow low frictional AgI coatings and a novel designed microstructure of nanoporous Ag filled with AgI (n-porous Ag/AgI) using a solution chemical method was also explored. The AgI coatings exhibited low friction coefficient and acceptable contact resistance. However, under very harsh conditions, their lifetime is too short. The initial tribotests showed high friction coefficient of the n-porous Ag/AgI coating, indicating an issue regarding its mechanical integrity.

The use of graphene as a solid lubricant in sliding electrical contacts was investigated as well. The results show that graphene is an excellent solid lubricant in Ag-based contacts. Furthermore, the lubricating effect was found to be dependent on chemical composition of the counter surface. As an alternative lubricant, graphene oxide is cheaper and easier to produce. Preliminary tests with graphene oxide showed a similar frictional behavior as graphene suggesting a potential use of this material as lubricant in Ag contacts.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 98 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1517
Keyword
electrical contact, bulk, coating, Ag-based alloys, Ag-based delafossite, AgI, graphene, graphene oxide, combinatorial material science, dc magnetron sputtering, friction, wear, hardness, contact resistance
National Category
Materials Engineering
Identifiers
urn:nbn:se:uu:diva-320235 (URN)978-91-554-9915-0 (ISBN)
Public defence
2017-06-08, Room 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2017-05-18 Created: 2017-04-18 Last updated: 2017-06-07

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Malinovskis, PauliusMao, FangAndersson, MatildaJansson, Ulf

Search in DiVA

By author/editor
Malinovskis, PauliusMao, FangAndersson, MatildaJansson, Ulf
By organisation
Inorganic Chemistry
In the same journal
Surface & Coatings Technology
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1036 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf