uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of a zirconia co-fired ceramic calorimetric microsensor for high-temperature flow measurements
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (ÅSTC)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (ÅSTC)
2015 (English)In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 25, no 6, 065014Article in journal (Refereed) Published
Abstract [en]

This paper describes the design, fabrication and characterization of a flow sensor for high-temperature, or otherwise aggressive, environments, like, e.g. the propulsion system of a small spacecraft. The sensor was fabricated using 8 mol% yttria stabilized zirconia (YSZ8) high-temperature co-fired ceramic (HTCC) tape and screen printed platinum paste. A calorimetric flow sensor design was used, with five 80 mu m wide conductors, separated by 160 mu m, in a 0.4 mm wide, 0.1 mm deep and 12.5 mm long flow channel. The central conductor was used as a heater for the sensor, and the two adjacent conductors were used to resistively measure the heat transferred from the heater by forced convection. The two outermost conductors were used to study the influence of an auxiliary heat source on the sensor. The resistances of the sensor conductors were measured using four-point connections, as the gas flow rate was slowly increased from 0 to 40 sccm, with different power supplied through the central heater, as well as with an upstream or downstream heater powered. In this study, the thermal and electrical integrability of microcomponents on the YSZ8 substrate was of particular interest and, hence, the influence of thermal and ionic conduction in the substrate was studied in detail. The effect of the ion conductivity of YSZ8 was studied by measuring the resistance of a platinum conductor and the resistance between two adjacent conductors on YSZ8, in a furnace at temperatures from 20 to 930 degrees C and by measuring the resistance with increasing current through a conductor. With this design, the influence of ion conductivity through the substrate became apparent above 700 degrees C. The sensitivity of the sensor was up to 1 m Omega sccm(-1) in a range of 0-10 sccm. The results show that the signal from the sensor is influenced by the integrated auxiliary heating conductors and that these auxiliary heaters provide a way to balance disturbing heat sources, e.g. thrusters or other electronics, in conjunction with the flow sensor.

Place, publisher, year, edition, pages
2015. Vol. 25, no 6, 065014
National Category
Other Engineering and Technologies
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-246059DOI: 10.1088/0960-1317/25/6/065014ISI: 000354803000014OAI: oai:DiVA.org:uu-246059DiVA: diva2:791758
Available from: 2015-03-02 Created: 2015-03-02 Last updated: 2017-12-04Bibliographically approved
In thesis
1. High-Temperature Microfluidics for Space Propulsion
Open this publication in new window or tab >>High-Temperature Microfluidics for Space Propulsion
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, microfabrication methods and tools for analysis of heated cold-gas microthrusters are presented, with the aim of improving their reliability and performance. Cold-gas thrusters operate by accelerating pressurized gas through a nozzle. These thruster systems are very straightforward in both design and operation, relying on little more than a pressurized tank, a valve, and a nozzle. This makes them suitable for miniaturization, enabling their use on very small spacecraft. However, an inherent drawback with cold-gas thrusters is their low propellant efficiency – in thrusters known as specific impulse, or Isp.  This is compounded by the fact that when reducing length, the volume, e.g., that of the propellant tank, reduces with the cube of the length, meaning that the maximum amount of storable fuel reduces quickly. Hence, maximizing fuel efficiency is even more important in miniaturized systems. Still, because of their other advantages, they remain suitable for many missions. Schlieren imaging – a method of visualizing differences in refractive index – was used thrughout this thesis to visualize exhaust jets from microthrusters, and to find leaks in the components. It was found that effects of the processing of conventionally fabricated silicon nozzles, resulted in a misalignment of up to 3°  from the intended thrust vector, increasing propellant consumption by up to 5%, and potentially causing unintended off-axis acceleration of the spacecraft. Schlieren imaging was also used to verify that the exhaust from thrusters fabricated with close to circular cross-sections was well behaved. These nozzles did not suffer from the previous misalignment issue, and the shape of the cross-section decreased viscous losses. For applications requiring higher temperatures, a microthruster nozzle with an integrated flow sensor was fabricated from tape cast yttria stabilized zirconia. The ceramic substrate enabled heater temperatures of the nozzle exceeding 1000 °C, resulting in an increase in Isp  of 7.5%. Integration of a flow sensor allowed the elimination of couplings and reduced the number of interfaces, thereby reducing the overall risk of failure. Close integration of the sensor allowed moving the point of measurement closer to the nozzle, enabling improved reliability of the measurements of the propellant consumption. The temperature of the heater, in combination with the ion conductive properties of the substrate proved to be a limiting factor in this design. Two routes were explored to overcome these problems. One was to use the temperature dependence of the ion conductivity as a sensing principle, thereby demonstrating a completely new flow sensor principle, which results in better calibration, tighter integration, and 9 orders of magnitude stronger signal. The other was using hafnium oxide, or hafnia, as a structural material for high-temperature micro-electromechanical systems. This involved developing a recipe for casting hafnia ceramic powder, and determining the Young's modulus and thermal shock resistance of the cast samples, as well as studying the minimum feature size and maximum aspect ratio of cast microstructures.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 50 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1233
National Category
Other Engineering and Technologies
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-246057 (URN)978-91-554-9186-4 (ISBN)
Public defence
2015-04-24, 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2015-04-01 Created: 2015-03-02 Last updated: 2015-04-17

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lekholm, VillePersson, AndersKlintberg, LenaThornell, Greger

Search in DiVA

By author/editor
Lekholm, VillePersson, AndersKlintberg, LenaThornell, Greger
By organisation
Microsystems Technology
In the same journal
Journal of Micromechanics and Microengineering
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 813 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf