uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Structure and bonding in amorphous iron carbide thin films
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Show others and affiliations
2015 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 27, no 4, 045002- p.Article in journal (Refereed) Published
Abstract [en]

We investigate the amorphous structure, chemical bonding, and electrical properties of magnetron sputtered Fe1-xCx (0.21 <= x <= 0.72) thin films. X-ray, electron diffraction and transmission electron microscopy show that the Fe1-xCx films are amorphous nanocomposites, consisting of a two-phase domain structure with Fe-rich carbidic FeCy, and a carbon-rich matrix. Pair distribution function analysis indicates a close-range order similar to those of crystalline Fe3C carbides in all films with additional graphene-like structures at high carbon content (71.8 at% C). From x-ray photoelectron spectroscopy measurements, we find that the amorphous carbidic phase has a composition of 15-25 at% carbon that slightly increases with total carbon content. X-ray absorption spectra exhibit an increasing number of unoccupied 3d states and a decreasing number of C 2p states as a function of carbon content. These changes signify a systematic redistribution in orbital occupation due to charge-transfer effects at the domain-size-dependent carbide/matrix interfaces. The four-point probe resistivity of the Fe1-xCx films increases exponentially with carbon content from similar to 200 mu Omega cm (x = 0.21) to similar to 1200 mu Omega cm (x = 0.72), and is found to depend on the total carbon content rather than the composition of the carbide. Our findings open new possibilities for modifying the resistivity of amorphous thin film coatings based on transition metal carbides through the control of amorphous domain structures.

Place, publisher, year, edition, pages
2015. Vol. 27, no 4, 045002- p.
Keyword [en]
iron carbide, thin film coatings, sputtering, synchrotron radiation, amorphous nanocomposites, TEM, RDF
National Category
Inorganic Chemistry
URN: urn:nbn:se:uu:diva-246337DOI: 10.1088/0953-8984/27/4/045002ISI: 000348493500002PubMedID: 25567721OAI: oai:DiVA.org:uu-246337DiVA: diva2:794074
Available from: 2015-03-10 Created: 2015-03-05 Last updated: 2015-03-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jansson, Ulf
By organisation
Inorganic Chemistry
In the same journal
Journal of Physics: Condensed Matter
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 412 hits
ReferencesLink to record
Permanent link

Direct link