uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited
Show others and affiliations
2015 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 85, 279-289 p.Article in journal (Refereed) Published
Abstract [en]

Electrochemical hydrogen permeation measurements and in situ gas-loading X-ray diffraction measurements were performed on polycrystalline Mg films. Hydrogen diffusion constants, the hydride volume content and the in-plane stress were determined for different values of driving forces at 300 K. For alpha-Mg-H, a hydrogen diffusion constant of D-H(Mg) = 7(+/- 2) . 10(-11) m(2) s(-1) was determined. For higher concentrations, different kinetic regimes with reduced apparent diffusion constants Vat were found, depending on the driving force, decreasing to about D-H(tot) = 10(-18) m(2) s(-1). This lowest measured diffusion constant is two orders of magnitude larger than that of bulk beta-MgH2, and the difference is ascribed to a contribution from a fast diffusion along grain boundaries. The different kinetics regimes are attributed to the spatial distribution of hydrides. A heterogeneous hydride nucleation and growth model is suggested that is based on hemispherical hydrides spatially distributed according to the nuclei densities expressed as a function of the driving force. The model allows us to qualitatively explain the complex stress development, the different diffusion regimes and the blocking-layer thickness. As the blocking-layer thickness inversely scales with the driving force, small driving forces allow the hydriding of large film volume fractions. Maximum stress situations occur for hydride distances reaching four times the hydride radius and for hydride distances equaling the film thickness. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2015. Vol. 85, 279-289 p.
Keyword [en]
Magnesium film, Hydrogen diffusion, Hydrogen absorption, Hydride nucleation, Driving force
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-246333DOI: 10.1016/j.actamat.2014.11.031ISI: 000348956800028OAI: oai:DiVA.org:uu-246333DiVA: diva2:794140
Available from: 2015-03-10 Created: 2015-03-05 Last updated: 2015-03-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hjörvarsson, Björgvin
By organisation
Materials Physics
In the same journal
Acta Materialia
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 530 hits
ReferencesLink to record
Permanent link

Direct link