uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
High carriage rate of CTX-M-producing Escherichia coli in Chinese preschool children
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Microbiology and Infectious Medicine.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
Department of Paediatrics The Children's Hospital, Changchun City, China.
Department of Paediatrics The Children's Hospital, Changchun City, China.
Show others and affiliations
2015 (English)Article in journal (Refereed) Submitted
Place, publisher, year, edition, pages
National Category
Infectious Medicine
URN: urn:nbn:se:uu:diva-247256OAI: oai:DiVA.org:uu-247256DiVA: diva2:795418
Available from: 2015-03-16 Created: 2015-03-16 Last updated: 2015-04-17Bibliographically approved
In thesis
1. Aspects of Bacterial Resistance to Silver
Open this publication in new window or tab >>Aspects of Bacterial Resistance to Silver
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Bacterial resistance to antibiotics has increased rapidly within recent years, and it has become a serious threat to public health. Infections caused by multi-drug resistant bacteria entail higher morbidity, mortality, and a burden to health care systems. The use of biocides, including silver compounds, may affect the resistance to both biocides and antibiotics and, thereby, can be a driving factor in this development.

The aim of the following thesis was to investigate the frequency of silver resistance and the effects of silver exposure on bacterial populations being of clinical significance and from geographically different parts of the world. Furthermore, it explored the genetic background of silver resistance, and if silver could select directly or indirectly for antibiotic resistance.

By a range of methods, from culture in broth to whole genome sequencing, bacterial populations from humans, birds and from the environment were characterized.

The studies showed that sil genes, encoding silver resistance, occurred at a high frequency. Sil genes were found in 48 % of Enterobacter spp., in 41 % of Klebsiella spp. and in 21 % of all human Escherichia coli isolates with production of certain types of extended-spectrum beta-lactamases (CTX-M-14 and CTX-M-15). In contrast, silver resistance was not found in bird isolates or in bacterial species, such as Pseudomonas aeruginosa and Legionella spp., with wet environments as their natural habitat. One silver-resistant Enterobacter cloacae strain was isolated from a chronic leg ulcer after only three weeks of treatment with silver-based dressings. The in-vivo effects of these dressings were limited, and they failed to eradicate both Gram-positive and Gram-negative bacteria. The activity of silver nitrate in vitro was bacteriostatic on Gram-positive species such as S. aureus and bactericidal on Gram-negative species. In Enterobacteriaceae, sil genes were associated with silver resistance phenotypes in all but one case. Using whole genome sequencing, single nucleotide polymorphisms in the silS gene were discovered after silver exposure in isolates with expressed silver resistance. This resistance could co-select for resistance to beta-lactams, co-trimoxazole and gentamicin.

The findings of this thesis indicate that silver exposure may cause phenotypic silver resistance, and it may reduce the susceptibility to mainly beta-lactams and select for bacteria with resistance to clinically important antibiotics.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 64 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1084
Antimicrobial resistance, Silver resistance
National Category
Infectious Medicine
Research subject
Clinical Bacteriology
urn:nbn:se:uu:diva-247472 (URN)978-91-554-9205-2 (ISBN)
Public defence
2015-05-08, Hörsal, Department of clinical microbiology, Dag Hammarskjölds väg 17, Uppsala, 13:00 (Swedish)
Available from: 2015-04-15 Created: 2015-03-18 Last updated: 2015-04-17

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Sütterlin, SusanneMelhus, Åsa
By organisation
Clinical Microbiology and Infectious MedicineDepartment of Medical Sciences
Infectious Medicine

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 236 hits
ReferencesLink to record
Permanent link

Direct link