uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Platelet-Derived Growth Factor-Mediated Signaling through the Shb Adaptor Protein: Effects on Cytoskeletal Organization
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Show others and affiliations
2000 (English)In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 257, no 2, 245-254 p.Article in journal (Refereed) Published
Abstract [en]

The Src homology (SH) 2 domain adaptor protein Shb has previously been shown to interact with the platelet-derived growth factor (PDGF)-β receptor. In this study we show an association between Shb and the PDGF-α receptor which is mediated by the SH2 domain of Shb and involves tyrosine residue 720 in the kinase insert domain of the receptor. To assess the role of Shb in PDGF-mediated signaling, we have overexpressed wild-type Shb or Shb carrying a mutation (R522K) which renders the SH2 domain inactive, in Patch mouse (PhB) fibroblasts expressing both PDGF receptors (PhB/Rα). Overexpression of wild-type Shb, but not the R522K Shb mutant, affected PDGF-mediated reorganization of the cytoskeleton by decreasing membrane ruffle formation and stimulating the generation of filopodia relative the parental control cells. In addition, the PDGF-induced receptor-associated phosphatidylinositol 3′-kinase activity and phosphorylation of Akt was similar in both PhB/Rα/Shb and PhB/Rα/ShbR522K cells compared with the parental control, whereas the activation of Rac in response to PDGF-BB was diminished only in the PhB/Rα/Shb cells. We conclude that Shb plays a role in PDGF-dependent regulation of certain cytoskeletal changes by modulating the ability of PDGF to activate Rac.

Place, publisher, year, edition, pages
2000. Vol. 257, no 2, 245-254 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-51673DOI: 10.1006/excr.2000.4896PubMedID: 10837138OAI: oai:DiVA.org:uu-51673DiVA: diva2:79582
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Heldin, Carl-HenrikClaesson-Welsh, LenaWelsh, Michael

Search in DiVA

By author/editor
Heldin, Carl-HenrikClaesson-Welsh, LenaWelsh, Michael
By organisation
Ludwig Institute for Cancer ResearchDepartment of Medical Cell BiologyDepartment of Genetics and Pathology
In the same journal
Experimental Cell Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 891 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf