uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estrogen-mediated regulation of steroid metabolism in rat glial cells; effects on neurosteroid levels via regulation of CYP7B1-mediated catalysis
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
2015 (English)In: Journal of Steroid Biochemistry and Molecular Biology, ISSN 0960-0760, E-ISSN 1879-1220, Vol. 145, 21-27 p.Article in journal (Refereed) Published
Abstract [en]

Many neuroactive steroids, including dehydroepiandrosterone (DHEA), pregnenolone, 27-hydroxycholesterol and 17 beta-estradiol, are known to affect development and function of the brain and nervous system. These and other steroids can undergo tissue and/or cell-specific enzymatic conversions into steroid metabolites. Carefully regulated production of steroids with various physiological effects is important for cells of the nervous system. Astrocytes express many steroidogenic enzymes and are considered important producers of brain steroids. The quantitative roles of different pathways for steroid metabolism in rat astrocytes are not clear. In the current study we examined effects of estrogens on steroid metabolism catalyzed by CYP7B1 and other enzymes in primary cultures of rat astrocytes. The CYP7B1 enzyme, which has been linked to neurodegenerative disease, is involved in the metabolism of several important neurosteroids. In the present study, we found that 7 alpha-hydroxylation, performed by CYP7B1, is the quantitatively most important pathway for DHEA metabolism in rat astrocytes. In addition, our present experiments on catalytic steroid conversions revealed that estrogens significantly suppress the CYP7B1-catalyzed metabolism of not only DHEA but also of pregnenolone and 27-hydroxycholesterol in rat astrocytes. These novel findings point to a regulatory mechanism for control of the cellular levels of these neurosteroids via CYP7B1. Our hypothesis that estrogens can regulate neurosteroid levels via this enzymatic reaction was supported by experiments using ELISA to assay levels of DHEA and pregnenolone in the presence or absence of estrogen. Furthermore, the present results show that estrogen suppresses CYP7B1-catalyzed 7 alpha-hydroxylation also in primary cultures of rat Schwann cells, indicating that regulation by estrogen via this enzyme may be of relevance in both the CNS and the PNS. 

Place, publisher, year, edition, pages
2015. Vol. 145, 21-27 p.
Keyword [en]
Sex hormone, Nervous system, Astrocytes, Schwann cells, Neurosteroid metabolism
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:uu:diva-246670DOI: 10.1016/j.jsbmb.2014.09.022ISI: 000347771400003PubMedID: 25263657OAI: oai:DiVA.org:uu-246670DiVA: diva2:796073
Available from: 2015-03-18 Created: 2015-03-09 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Wicher, GrzegorzNorlin, Maria

Search in DiVA

By author/editor
Wicher, GrzegorzNorlin, Maria
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Journal of Steroid Biochemistry and Molecular Biology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 656 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf