uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wave normal angles of whistler mode chorus rising and falling tones
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2014 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, no 12Article in journal (Refereed) Published
Abstract [en]

We present a study of wave normal angles (theta(k)) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (+/- 20 degrees), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-theta(k) histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/f(c,e) approximate to 0.5 (f is the chorus frequency, f(c,e) is the local electron cyclotron frequency) and at theta(k) similar to 40 degrees. Below theta(k) similar to 40 degrees, the average value for theta(k) is predominantly field aligned, but slightly increasing with frequency toward half of f(c,e) (theta(k) up to 20 degrees). Above half of f(c,e), the average theta(k) is again decreasing with frequency. Above theta(k) similar to 40 degrees, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for theta(k) > 40 degrees and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at theta(k) > 40 degrees, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Place, publisher, year, edition, pages
2014. Vol. 119, no 12
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-247502DOI: 10.1002/2014JA020575ISI: 000349161100019OAI: oai:DiVA.org:uu-247502DiVA: diva2:796432
Available from: 2015-03-19 Created: 2015-03-19 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research - Space Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 367 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf