uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
2015 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, 8419- p.Article in journal (Refereed) Published
Abstract [en]

Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

Place, publisher, year, edition, pages
2015. Vol. 5, 8419- p.
National Category
Mechanical Engineering
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-247504DOI: 10.1038/srep08419ISI: 000349245600018PubMedID: 25673261OAI: oai:DiVA.org:uu-247504DiVA: diva2:796433
Available from: 2015-03-19 Created: 2015-03-19 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Soft Intelligence: Liquids Matter in Compliant Microsystems
Open this publication in new window or tab >>Soft Intelligence: Liquids Matter in Compliant Microsystems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Soft matter, here, liquids and polymers, have adaptability to a surrounding geometry. They intrinsically have advantageous characteristics from a mechanical perspective, such as flowing and wetting on surrounding surfaces, giving compliant, conformal and deformable behavior. From the behavior of soft matter for heterogeneous surfaces, compliant structures can be engineered as embedded liquid microstructures or patterned liquid microsystems for emerging compliant microsystems.

Recently, skin electronics and soft robotics have been initiated as potential applications that can provide soft interfaces and interactions for a human-machine interface. To meet the design parameters, developing soft material engineering aimed at tuning material properties and smart processing techniques proper to them are to be highly encouraged. As promising candidates, Ga-based liquid alloys and silicone-based elastomers have been widely applied to proof-of-concept compliant structures.

In this thesis, the liquid alloy was employed as a soft and stretchable electrical and thermal conductor (resistor), interconnect and filler in an elastomer structure. Printing-based liquid alloy patterning techniques have been developed with a batch-type, parallel processing scheme. As a simple solution, tape transfer masking was combined with a liquid alloy spraying technique, which provides robust processability. Silicone elastomers could be tunable for multi-functional building blocks by liquid or liquid-like soft solid inclusions. The liquid alloy and a polymer additive were introduced to the silicone elastomer by a simple mixing process. Heterogeneous material microstructures in elastomer networks successfully changed mechanical, thermal and surface properties.

To realize a compliant microsystem, these ideas have in practice been useful in designing and fabricating soft and stretchable systems. Many different designs of the microsystems have been fabricated with the developed techniques and materials, and successfully evaluated under dynamic conditions. The compliant microsystems work as basic components to build up a whole system with soft materials and a processing technology for our emerging society.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 93 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1357
Keyword
Liquid, Elastomer, Cross-linking, Liquid alloy, PDMS, Adaptability, Compliance, Interface, Patterning, Printing, Surface energy, Wetting, Composite, Modulus, Stretchability, Viscoelasticity, Thermal conductivity, Contact resistance, Adhesion, Packaging, Integration, Microsystems, Microfluidics, Strain sensor, Thermoelectrics, Inductive coupling, Wireless communication, Stretchable electron-ics, Epidermal electronics, Skin electronics, Soft robotics, Wearable electronics
National Category
Composite Science and Engineering Textile, Rubber and Polymeric Materials Energy Engineering Other Engineering and Technologies not elsewhere specified Embedded Systems Robotics
Research subject
Engineering Science with specialization in Microsystems Technology; Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-281281 (URN)978-91-554-9521-3 (ISBN)
Public defence
2016-05-11, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-04-19 Created: 2016-03-21 Last updated: 2016-04-21

Open Access in DiVA

fulltext(1163 kB)273 downloads
File information
File name FULLTEXT01.pdfFile size 1163 kBChecksum SHA-512
937c7e24437f57015f2be55d59fa9fc6315af97d2de0e5507bbe0a5c7012f6ecf9523b5d6eecd10855094be74a57b651c6a2b66d6cc6b3dabd758b0878cf6f32
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Jeong, Seung HeeHjort, KlasWu, Zhigang

Search in DiVA

By author/editor
Jeong, Seung HeeHjort, KlasWu, Zhigang
By organisation
Microsystems Technology
In the same journal
Scientific Reports
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 273 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 866 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf