uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vitamin D3 and retinoic acid induced monocytic differentiation: Interactions between the endogenous vitamin D3, retinoic acid and retinoid X receptors in U-937 cells
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. (Dermatology and Venereology)
Show others and affiliations
1996 (English)In: Cell growth & differentiation, ISSN 1044-9523, Vol. 7, no 9, 1239-49 p.Article in journal (Refereed) Published
Abstract [en]

Retinoic acid (RA) and 1,25 alpha-dihydroxycholecalciferol (VitD3) are potent regulators of hematopoletic differentiation. Yet, little is known as to how the RA and VitD3 receptor network operates in hematopoietic cells, and whether receptor interactions can explain the interplay between the RA- and VitD3-signaling pathways during differentiation. Therefore, we analyzed the expression, DNA binding, and transcriptional activity of the endogenous RA and VitD3 receptors [retinoic acid receptors (RARs), retinoid X receptors (RXRs), and VitD3 receptor (VDR)] in the U-937 cell line, in which RA and VitD3 induce distinct monocytic differentiation pathways. VitD3 induction resulted in the formation of VDR/RXR DNA-binding complexes on both VitD3 response elements and RA response elements (RAREs). However, transcriptional activation was only observed from a VitD3 response element-driven reporter construct. Several DNA-binding complexes were detected on RAREs in undifferentiated cells. Stimulation by RA resulted in increased RAR beta/RXR DNA binding, activated RARE-dependent transcription, and increased expression of RAR-beta. Concomitant stimulation by VitD3 inhibited the RA-stimulated formation of RAR beta/RXR heterodimers, favoring VDR/RXR binding to the RARE. Also, VitD3 inhibited the expression of CD23 and CD49f, characteristic markers of retinoid-induced U-937 cell differentiation. In contrast, neither the RA-stimulated, RARE-mediated transcription nor the induced RAR-beta expression was suppressed by VitD3, suggesting that VitD3 selectively inhibited the retinoid-induced differentiation program but not the RARE-mediated signal. These results demonstrate a complex role for VitD3 in modifying the retinoid differentiation pathway and may have implications for differentiation-inducing therapy of hematopoietic tumors.

Place, publisher, year, edition, pages
1996. Vol. 7, no 9, 1239-49 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-51767PubMedID: 8877104OAI: oai:DiVA.org:uu-51767DiVA: diva2:79676
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

PubMed

Authority records BETA

Botling, JohanÖberg, FredrikNilsson, Kenneth

Search in DiVA

By author/editor
Botling, JohanÖberg, FredrikNilsson, Kenneth
By organisation
Department of Genetics and PathologyDepartment of Medical Sciences
In the same journal
Cell growth & differentiation
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 620 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf