uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals: a first-principles study
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Indian Institute of Science, Bangalore-560 012, India.
Show others and affiliations
2015 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 143, no 16, 164701Article in journal (Refereed) Published
Abstract [en]

Semiconducting nanocrystals (NCs) have become one of the leading materials in a variety of applications, mainly due to their size tunable band gap and high intensity emission. Their photoluminescence properties can be notably improved by capping the nanocrystals with a shell of another semiconductor, making core-shell structures. We focus our study on the CdS/ZnS core-shell nanocrystals, that are closely related to extensively studied CdSe/CdS NCs, albeit exhibiting rather different photoluminescence properties. We employ density functional theory to investigate the changes in the electronic and optical properties of these nanocrystals with size, core/shell ratio and interface structure between the core and the shell. We show that the band gap depends on the size of the NCs and the core/shell ratio. We suggest that the differences in the density of states and absorption are mainly governed by the core/shell ratio. We present that both the LUMO and the HOMO wavefunctions are localised in the core of the NCs, with the distribution of the LUMO wavefunction being more sensitive to the size and the core/shell ratio. We also demonstrate that the Coulomb interaction energies closely follow the behaviour of the localisation of the HOMO and LUMO wavefunctions, and are decreasing with increasing NC size. Furthermore, we investigated the electronic and optical properties of the NCs with different interfaces between the core and the shell, and different core types. We find that the different interfaces and core types have rather small influence on the band gaps and the absorption indices, as well as on the confinement of the HOMO and LUMO wavefunctions. In addition, we compare these results with the previous results for CdSe/CdS NCs, reflecting the different PL properties of these two types of NCs. We argue that the difference in their Coulomb interaction energies is one of the main reasons for their distinct PL properties.

Place, publisher, year, edition, pages
2015. Vol. 143, no 16, 164701
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-248552DOI: 10.1063/1.4933058ISI: 000364235800046PubMedID: 26520537OAI: oai:DiVA.org:uu-248552DiVA: diva2:799873
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationStandUpeSSENCE - An eScience Collaboration
Available from: 2015-03-31 Created: 2015-03-31 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Theory and Modelling of Functional Materials
Open this publication in new window or tab >>Theory and Modelling of Functional Materials
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The diverse field of material research has been steadily expanding with a great help from computational physics, especially in the investigation of the fundamental properties of materials. This has driven the computational physics to become one of the main branches of physics, allowing for density functional theory (DFT) to develop as one of the cornerstones of material research. Nowdays, DFT is the method of choice in a great variety of studies, from fundamental properties, to materials modelling and searching for new materials. In this thesis, DFT is employed for the study of a small part of this vast pool of applications. Specifically, the microscopic characteristics of Zn1-xCdxS alloys are studied by looking into the evolution of the local structure. In addition, the way to model the growth of graphene on Fe(110) surface is discussed. The structural stability of silicon nanocrystals with various shapes is analysed in detail, as well.

DFT is further used in studying different properties of semiconductor nanocrystals. The size evolution of the character of the band gap in silicon nanocrystals is investigated in terms of changes in the character of the states around the band gap. The influence of various surface impurities on the band gap, as well as on the electronic and optical properties of silicon nanocrystals is further studied. In addition, the future use of silicon nanocrystals in photovoltaic devices is examined by studying the band alignment and the charge densities of silicon nanocrystals embedded in a silicon carbide matrix. Furthermore, the electronic and optical properties of different semiconductor nanocrystals is also investigated. In the case of the CdSe/CdS and CdS/ZnS core-shell nanocrystals the influence of the nanocrystal size and different structural models on their properties is analysed. For silicon nanocrystal capped with organic ligands, the changes in the optical properties and lifetimes is thoroughly examined with changes in the type of organic ligand.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 93 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1247
Keyword
nanocrystals, graphene, alloys, density functional theory, optical properties, electronic properties, core-shell structures, semiconductors
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-248513 (URN)978-91-554-9231-1 (ISBN)
Public defence
2015-05-27, Å10132 (Häggsalen), Ångström Laboratory, Lägerhydddsvägen 1, Uppsala, 13:30 (English)
Opponent
Supervisors
Available from: 2015-05-05 Created: 2015-03-30 Last updated: 2015-07-07

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Kocevski, VanchoEriksson, OlleRusz, Jan

Search in DiVA

By author/editor
Kocevski, VanchoEriksson, OlleRusz, Jan
By organisation
Materials Theory
In the same journal
Journal of Chemical Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf