uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Missense mutations in the human glutathione synthetase gene result in severe metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and neurological dysfunction
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Show others and affiliations
1997 (English)In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 6, no 7, 1147-1152 p.Article in journal (Refereed) Published
Abstract [en]

Severe glutathione synthetase (GS) deficiency is a rare genetic disorder with neonatal onset. The enzymatic block of the gamma-glutamyl cycle leads to a generalized glutathione deficiency. Clinically affected patients present with severe metabolic acidosis, 5-oxoprolinuria, increased rate of hemolysis and defective function of the central nervous system. The disorder is inherited in an autosomal recessive mode and, until recently, the molecular basis has remained unknown. We have sequenced 18 GS alleles associated with enzyme deficiency and we detected missense mutations by direct sequencing of cDNAs and genomic DNA. In total, 13 different mutations were identified. Four patients were found to be compound heterozygotes and two individuals were apparently homozygous. Reduced enzymatic activities were demonstrated in recombinant protein expressed from cDNAs in four cases with different missense mutations. The results from biochemical analysis of patient specimens, supported by the properties of the expressed mutant proteins, indicate that a residual activity is present in affected individuals. Our results suggest that complete loss of function of both GS alleles is probably lethal. It is postulated that missense mutations will account for the phenotype in the majority of patients with severe GS deficiency.

Place, publisher, year, edition, pages
1997. Vol. 6, no 7, 1147-1152 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-52132PubMedID: 9215686OAI: oai:DiVA.org:uu-52132DiVA: diva2:80041
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

PubMed
By organisation
Department of Genetics and Pathology
In the same journal
Human Molecular Genetics
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 339 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf