uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Regulation of adenovirus alternative RNAsplicing by dephosphorylation of SR proteins
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Show others and affiliations
1998 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 393, no 6681, 185-187 p.Article in journal (Refereed) Published
Abstract [en]

SR proteins are a family of essential splicing factors required for early recognition of splice sites during spliceosome assembly. They also function as alternative RNA splicing factors when overexpressed in vivo or added in excess to extracts in vitro. SR proteins are highly phosphorylated in vivo, a modification that is required for their function in spliceosome assembly and splicing catalysis. Here we show that SR proteins purified from late adenovirus-infected cells are inactivated as splicing enhancer or splicing repressor proteins by virus-induced dephosphorylation. We further show that the virus-encoded protein E4-ORF4 activates dephosphorylation by protein phosphatase 2A of HeLa SR proteins and converts their splicing properties into that of SR proteins purified from late adenovirus-infected cells. Taken together, our results suggest that E4-ORF4 is an important factor controlling the temporal shift in adenovirus alternative RNA splicing. We conclude that alternative pre-mRNA splicing, like many other biological processes, is regulated by reversible protein phosphorylation.

Place, publisher, year, edition, pages
1998. Vol. 393, no 6681, 185-187 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-52576DOI: 10.1038/30277PubMedID: 9603524OAI: oai:DiVA.org:uu-52576DiVA: diva2:80486
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Akusjärvi, Göran

Search in DiVA

By author/editor
Akusjärvi, Göran
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
Nature
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 606 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf