uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
What causes the large extensions of red supergiant atmospheres?: Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres
Show others and affiliations
2015 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 575, A50Article in journal (Refereed) Published
Abstract [en]

Aims. This research has two main goals. First, we present the atmospheric structure and the fundamental parameters of three red supergiants (RSGs), increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. Methods. We carried out spectro-interferometric observations of the.RSGs V602 Car, EID 95687, and EID 183589 in the near-infrared K-band (1.92-2.47 mu m) with the VLTI/AMBER instrument at medium spectral resolution (R similar to 1500). To categorize and comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3D convection, and new 1D self-excited pulsation models of RSGs. Results. Our near-infrared flux spectra of V602 Car, HD 95687, and HD 183589 are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict the large observed extensions of molecular layers, most remarkably in the CO bands. Likewise, the 3D convection models and the ID pulsation models with typical parameters of RSGs lead to compact atmospheric structures as well, which are similar to the structure of the hydrostatic PHOENIX models. They can also not explain the observed decreases in the visibilities and thus the large atmospheric molecular extensions. The full sample of our RSGs indicates increasing observed atmospheric extensions with increasing luminosity and decreasing surface gravity, and no correlation with effective temperature or variability amplitude. Conclusions. The location of our RSG sources in the Hertzsprung-Russell diagram is contirm.ed to be consistent with the red limits of recent evolutionary tracks. The observed extensions of the atmospheric layers of our sample of RSGs are comparable to those of Mira stars. This phenomenon is not predicted by any of the considered model atmospheres including as 311) convection and new 1D pulsation models of.RSGs. This confirms that neither convection nor pulsation alone can levitate the molecular atmospheres of.RSGs. Our observed correlation of atmospheric extension with luminosity supports a scenario of radiative acceleration on Doppler-shifted molecular lines.

Place, publisher, year, edition, pages
2015. Vol. 575, A50
Keyword [en]
stars: fundamental parameters, stars: individual: V602 Car, stars: individual: HD 95687, stars: atmospheres, stars: individual: HD 183589, supergiants
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:uu:diva-251444DOI: 10.1051/0004-6361/201425212ISI: 000350249100050OAI: oai:DiVA.org:uu-251444DiVA: diva2:807290
Available from: 2015-04-23 Created: 2015-04-17 Last updated: 2015-04-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Freytag, Bernd
By organisation
Theoretical Astrophysics
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 498 hits
ReferencesLink to record
Permanent link

Direct link