uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.
Show others and affiliations
2015 (English)In: Journal of Applied Geophysics, ISSN 0926-9851, E-ISSN 1879-1859, Vol. 114, 52-67 p.Article in journal (Refereed) Published
Abstract [en]

Integration of information from the following sources has been used to produce a much better constrained and more complete four-unit geological/hydrological model of the Okavango Delta than previously available: (i) a 3D resistivity model determined from helicopter time-domain electromagnetic (HTEM) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta, and (iii) geological details extracted from boreholes in northeastern and southeastern parts of the delta. The upper heterogeneous unit is the modern delta, which comprises extensive dry and freshwater-saturated sand and lesser amounts of clay and salt. It is characterized by moderate to high electrical resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays deposited in the huge Paleo Lake Makgadikgadi (PLM), which once covered a 90,000 km(2) area that encompassed the delta, Lake Ngami, the Mababe Depression, and the Makgadikgadi Basin. Examples of PLM sediments are intersected in many boreholes. Low permeability clay within the PLM unit seems to be a barrier to the downward flow of the saline water. Below the PLM unit, freshwater-saturated sand of the Paleo Okavango Megafan (POM) unit is distinguished by moderate to high resistivities, low P-wave velocity, and numerous subhorizontal reflectors. The POM unit is interpreted to be the remnants of a megafan based on the arcuate nature of its front and the semi-conical shape of its upper surface in the HTEM resistivity model. Moderate to high resistivity subhorizontal layers are consistent with this interpretation. The deepest unit is the basement with very high resistivity, high P-wave velocity, and low or complex reflectivity. The interface between the POM unit and basement is a prominent seismic reflector. (C) 2015 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
2015. Vol. 114, 52-67 p.
Keyword [en]
TEM, ERT, Seismic reflection, Seismic refraction, Hydrogeophysics, Okavango Delta
National Category
URN: urn:nbn:se:uu:diva-251834DOI: 10.1016/j.jappgeo.2014.12.017ISI: 000351247500006OAI: oai:DiVA.org:uu-251834DiVA: diva2:808062
Available from: 2015-04-27 Created: 2015-04-24 Last updated: 2016-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kalscheuer, Thomas
By organisation
In the same journal
Journal of Applied Geophysics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 178 hits
ReferencesLink to record
Permanent link

Direct link