uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aryl Hydrocarbon Receptor Activation and Developmental Toxicity in Zebrafish in Response to Soil Extracts Containing Unsubstituted and Oxygenated PAHs
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
Show others and affiliations
2015 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 49, no 6, 3869-3877 p.Article in journal (Refereed) Published
Abstract [en]

Many industrial sites are polluted by complex mixtures of polycydic aromatic compounds (PACs). Besides polycyclic aromatic hydrocarbons (PAHs), these mixtures often contain significant amounts of more polar PACs including oxygenated PAHs (oxy-PAHs). The effects of oxy-PAHs are, however, poorly known. Here we used zebrafish embryos to examine toxicities and transcriptional changes induced by PAC containing soil extracts from three different industrial sites: a gasworks (GAS), a former wood preservation site (WOOD), and a coke oven (COKE), and to PAR and oxy-PAH containing fractions of these. All extracts induced aryl hydrocarbon receptor (Ahr)-regulated mRNAs, malformations, and mortality. The WOOD extract was most toxic and the GAS extract least toxic. The extracts induced glutathione transferases and heat shock protein 70, suggesting that the toxicity also involved oxidative stress. With all extracts, Ahr2-knock-down reduced the toxicity, indicating a significant Ahr2-dependence on the effects. Ahr2-knock-down was most effective with the PAH fraction of the WOOD extract and with the oxy-PAH fraction of the COKE extract. Our results indicate that oxy-PAH containing mixtures can be as potent Ahr activators and developmental toxicants as PAHs. In addition to Ahr activating potency, the profile of cytochrome P4501 inhibitors may also determine the toxic potency of the extracts.

Place, publisher, year, edition, pages
2015. Vol. 49, no 6, 3869-3877 p.
National Category
Ecology
Identifiers
URN: urn:nbn:se:uu:diva-252007DOI: 10.1021/es505588sISI: 000351324400071PubMedID: 25715055OAI: oai:DiVA.org:uu-252007DiVA: diva2:809869
Available from: 2015-05-05 Created: 2015-04-28 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Environmental toxicology
In the same journal
Environmental Science and Technology
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 445 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf