uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Structure and energy of point defects in TiC: An ab initio study
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2015 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 91, no 13, 134111Article in journal (Refereed) Published
Abstract [en]

We employ first-principles calculations to study the atomic and electronic structure of various point defects such as vacancies, interstitials, and antisites in the stoichiometric as well as slightly off-stoichiometric Ti-1-C-c(c) (including both C-poor and C-rich compositions, 0.49 <= c <= 0.51). The atomic structure analysis has revealed that both interstitial and antisite defects can exist in split conformations involving dumbbells. To characterize the electronic structure changes caused by a defect, we introduce differential density of states (dDOS) defined as a local perturbation of the density of states (DOS) on the defect site and its surrounding relative to the perfect TiC. This definition allows us to identify the DOS peaks characteristic of the studied defects in several conformations. So far, characteristic defect states have been discussed only in connection with carbon vacancies. Here, in particular, we have identified dDOS peaks of carbon interstitials and dumbbells, which can be used for experimental detection of such defects in TiC. The formation energies of point defects in TiC are derived in the framework of a grand-canonical formalism. Among the considered defects, carbon vacancies and interstitials are shown to have, respectively, the lowest and the second-lowest formation energies. Their formation energetics are consistent with the thermodynamic data on the phase stability of nonstoichiometric TiC. A cluster type of point defect is found to be next in energy, a titanium [100] dumbbell terminated by two carbon vacancies.

Place, publisher, year, edition, pages
2015. Vol. 91, no 13, 134111
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-252997DOI: 10.1103/PhysRevB.91.134111ISI: 000353448900001OAI: oai:DiVA.org:uu-252997DiVA: diva2:812434
Available from: 2015-05-18 Created: 2015-05-18 Last updated: 2015-05-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sun, Weiwei
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 463 hits
ReferencesLink to record
Permanent link

Direct link