uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Modeling rapidly growing cracks in planar materials with a view to micro structural effects
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Mechanics.
2015 (English)In: International Journal of Fracture, ISSN 0376-9429, E-ISSN 1573-2673, Vol. 192, no 2, 191-201 p.Article in journal (Refereed) Published
Abstract [en]

Dynamic fracture behavior in both fairly continuous materials and discontinuous cellular materials is analyzed using a hybrid particle model. It is illustrated that the model remarkably well captures the fracture behavior observed in experiments on fast growing cracks reported elsewhere. The material's microstructure is described through the configuration and connectivity of the particles and the model's sensitivity to a perturbation of the particle configuration is judged. In models describing a fairly homogeneous continuous material, the microstructure is represented by particles ordered in rectangular grids, while for models describing a discontinuous cellular material, the microstructure is represented by particles ordered in honeycomb grids having open cells. It is demonstrated that small random perturbations of the grid representing the microstructure results in scatter in the crack growth velocity. In materials with a continuous microstructure, the scatter in the global crack growth velocity is observable, but limited, and may explain the small scattering phenomenon observed in experiments on high-speed cracks in e.g. metals. A random perturbation of the initially ordered rectangular grid does however not change the average macroscopic crack growth velocity estimated from a set of models having different grid perturbations and imply that the microstructural discretization is of limited importance when predicting the global crack behavior in fairly continuous materials. On the other hand, it is shown that a similar perturbation of honeycomb grids, representing a material with a discontinuous cellular microstructure, result in a considerably larger scatter effect and there is also a clear shift towards higher crack growth velocities as the perturbation of the initially ordered grid become larger. Thus, capturing the discontinuous microstructure well is important when analyzing growing cracks in cellular or porous materials such as solid foams or wood.

Place, publisher, year, edition, pages
2015. Vol. 192, no 2, 191-201 p.
Keyword [en]
Dynamic fracture, Crack growth velocity, Particle method, Heterogeneous material
National Category
Materials Engineering
Research subject
Engineering science with specialization in Applied Mechanics
URN: urn:nbn:se:uu:diva-252700DOI: 10.1007/s10704-015-0002-9ISI: 000352711800005OAI: oai:DiVA.org:uu-252700DiVA: diva2:813332
Swedish Research Council, 2010-4348
Available from: 2015-05-22 Created: 2015-05-11 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Isaksson, Per
By organisation
Applied Mechanics
In the same journal
International Journal of Fracture
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 476 hits
ReferencesLink to record
Permanent link

Direct link