uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of physiological hyperinsulinemia on blood flow and interstitial glucose concentration in human skeletal muscle and adipose tissue studied by microdialysis
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences. (Geriatrics)
Show others and affiliations
1998 (English)In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 47, no 8, 1296-1301 p.Article in journal (Refereed) Published
Abstract [en]

The effect of an euglycemic-hyperinsulinemic glucose clamp (94 +/- 5 microU/ml) on blood flow and glucose extraction fraction in human skeletal muscle and adipose tissue was investigated. Limb blood flow was measured by venous occlusion pletysmography and tissue blood flow by the microdialysis ethanol technique. Insulin infusion resulted in an increased blood flow in the calf and forearm (64 and 36%, respectively; P < 0.01) but not in the studied muscles of these limbs (ethanol outflow-to-inflow ratio: m. gastrocnemius 0.144 +/- 0.009 to 0.140 +/- 0.011, NS; m. brachioradialis 0.159 +/- 0.025 to 0.168 +/- 0.027, NS). This was accompanied by an increased extraction fraction of glucose, as measured by an increased arteriovenous difference over the forearm (0.16 +/- 0.04 to 0.70 +/- 0.10 mmol/l; P < 0.001) and by an increase in the estimated arterial-interstitial glucose difference in the gastrocnemius (0.82-1.42 mmol/l) and brachioradialis muscle (0.82-1.97 mmol/l). The blood flow in adipose tissue was significantly increased during insulin infusion, as evidenced by a decreased ethanol outflow-to-inflow ratio (0.369 +/- 0.048 to 0.325 +/- 0.046; P < 0.01). This was accompanied by an unchanged concentration of glucose in the dialysate (-2.6%, NS). In summary, during physiological hyperinsulinemia 1) a blood flow increase was detected in the calf and forearm, but not in the studied muscles of these limbs; 2) the blood flow increased in the subcutaneous adipose tissue; and 3) the estimated arterial-interstitial glucose difference increased in both muscles studied and was larger in the forearm muscle than the arteriovenous glucose difference over the forearm. The present study shows that microdialysis is a useful tool to obtain tissue-specific information about the effect of insulin on blood flow and glucose extraction in human skeletal muscle and adipose tissue.

Place, publisher, year, edition, pages
1998. Vol. 47, no 8, 1296-1301 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-53747DOI: 10.2337/diabetes.47.8.1296PubMedID: 9703331OAI: oai:DiVA.org:uu-53747DiVA: diva2:81657
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Medical SciencesDepartment of Public Health and Caring Sciences
In the same journal
Diabetes
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 310 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf