uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inhalation of a nitric oxide synthase inhibitor to a hypoxic or collapsed lung lobe in anaesthetized pigs: effects on pulmonary blood flow distribution
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
Show others and affiliations
1996 (English)In: British Journal of Anaesthesia, ISSN 0007-0912, E-ISSN 1471-6771, Vol. 77, no 3, 413-418 p.Article in journal (Refereed) Published
Abstract [en]

I.v. administration of the nitric oxide synthase inhibitor, nitro-L-arginine methyl ester (L-NAME), not only reduces blood flow in a hypoxic lung region but also causes systemic vasoconstriction and a decrease in cardiac output. In this study, we delivered nebulized L-NAME 0.2-1 mg kg-1 to the left lower lobe of 10 anaesthetized pigs. The left lower lobe was made hypoxic by selective inhalation of 5% oxygen or collapsed by interrupted ventilation, or both. Inhalation of L-NAME reduced fractional blood flow to the left lower lobe from 5.3 (SD 3.1)% to 1.7 (1.4)% (P < 0.05) in lobar hypoxia and from 6.0 (3.3) to 2.7 (2.7)% (P < 0.05) in lobar collapse. These reductions were accompanied by a significant increase in PaO2. There were no significant changes in arterial pressure, cardiac output or heart rate. We have shown that selective inhalation of L-NAME reduced blood flow to a hypoxic or collapsed lung region without systemic effects. The possible role for nitric oxide synthase inhibition in reducing shunt during one-lung ventilation, however, requires further study.

Place, publisher, year, edition, pages
1996. Vol. 77, no 3, 413-418 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-54444DOI: 10.1093/bja/77.3.413PubMedID: 8949822OAI: oai:DiVA.org:uu-54444DiVA: diva2:82353
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Fredén, FilipBerglund, Jan ErikHedenstierna, Göran

Search in DiVA

By author/editor
Fredén, FilipBerglund, Jan ErikHedenstierna, Göran
By organisation
Anaesthesiology and Intensive CareClinical Physiology
In the same journal
British Journal of Anaesthesia
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 373 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf