uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gold Oxide Nanoparticles with Variable Gold Oxidation State
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Show others and affiliations
2015 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 16, 8937-8943 p.Article in journal (Refereed) Published
Abstract [en]

Gold-oxide-containing nanoparticles have been produced in a range of partial to full oxidation conditions, where the nanoparticle electronic structure and stoichiometry have been characterized. Our results indicate that with the increase of the oxidation degree in these nanoparticles the gold oxidation state possibly changes from lower oxides with monoor divalent metal to the higher oxide with the trivalent gold. At intermediate oxidation conditions our observations are consistent with a radially segregated structure of such nanopaiticles-with the core containing mainly oxide and the surface covered with few monolayers of metallic gold. These results have been possible to obtain combining the vapor aggregation method for the nanoparticle fabrication and synchrotron-based photoelectron spectroscopy for their characterization. The deposition of the oxidized nanoparticles has showed that the species assigned as containing lower oxide could be preserved in the landing and then studied on a substrate for a limited time. The possible lower oxide formation in nanoparticles is discussed in connection to the enhanced catalytic activity of gold nanoparticles.

Place, publisher, year, edition, pages
2015. Vol. 119, no 16, 8937-8943 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-255292DOI: 10.1021/acs.jpcc.5b00811ISI: 000353603500059OAI: oai:DiVA.org:uu-255292DiVA: diva2:824419
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationThe Crafoord Foundation
Available from: 2015-06-22 Created: 2015-06-15 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Björneholm, Olle

Search in DiVA

By author/editor
Björneholm, Olle
By organisation
Molecular and condensed matter physics
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 678 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf