uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Pulmonary Vasoconstriction during Regional Nitric Oxide Inhalation: Evidence of a Blood-borne Regulator of Nitric Oxide Synthase Activity
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. (Clinical Physiology)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences. (Anaesthesiology and Intensive Care)
Show others and affiliations
2001 (English)In: Anesthesiology, ISSN 0003-3022, E-ISSN 1528-1175, Vol. 95, no 1, 102-112 p.Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Inhaled nitric oxide (INO) is thought to cause selective pulmonary vasodilation of ventilated areas. The authors previously showed that INO to a hyperoxic lung increases the perfusion to this lung by redistribution of blood flow, but only if the opposite lung is hypoxic, indicating a more complex mechanism of action for NO. The authors hypothesized that regional hypoxia increases NO production and that INO to hyperoxic lung regions (HL) can inhibit this production by distant effect.

METHODS: Nitric oxide concentration was measured in exhaled air (NO(E)), NO synthase (NOS) activity in lung tissue, and regional pulmonary blood flow in anesthetized pigs with regional left lower lobar (LLL) hypoxia (fraction of inspired oxygen [FIO2] = 0.05), with and without INO to HL (FIO2 = 0.8), and during cross-circulation of blood from pigs with and without INO.

RESULTS: Left lower lobar hypoxia increased exhaled NO from the LLL (NO(E)LLL) from a mean (SD) of 1.3 (0.6) to 2.2 (0.9) parts per billion (ppb) (P < 0.001), and Ca2+-dependent NOS activity was higher in hypoxic than in hyperoxic lung tissue (197 [86] vs. 162 [96] pmol x g(-1) x min(-1), P < 0.05). INO to HL decreased the Ca2+-dependent NOS activity in hypoxic tissue to 49 [56] pmol x g(-1) x min(-1) (P < 0.01), and NO(E)LLL to 2.0 [0.8] ppb (P < 0.05). When open-chest pigs with LLL hypoxia received blood from closed-chest pigs with INO, NO(E)LLL decreased from 2.0 (0.6) to 1.5 (0.4) ppb (P < 0.001), and the Ca2+-dependent NOS activity in hypoxic tissue decreased from 152 (55) to 98 (34) pmol x g(-1) x min(-1) (P = 0.07). Pulmonary vascular resistance increased by 32 (21)% (P < 0.05), but more so in hypoxic (P < 0.01) than in hyperoxic (P < 0.05) lung regions, resulting in a further redistribution (P < 0.05) of pulmonary blood flow away from hypoxic to hyperoxic lung regions.

CONCLUSIONS: Inhaled nitric oxide downregulates endogenous NO production in other, predominantly hypoxic, lung regions. This distant effect is blood-mediated and causes vasoconstriction in lung regions that do not receive INO.

Place, publisher, year, edition, pages
2001. Vol. 95, no 1, 102-112 p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-54872PubMedID: 11465547OAI: oai:DiVA.org:uu-54872DiVA: diva2:82781
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2010-10-21Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Medical SciencesDepartment of Surgical Sciences
In the same journal
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 101 hits
ReferencesLink to record
Permanent link

Direct link