uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Element-specific electronic structure and magnetic properties of an epitaxial Ni51.6Mn32.9Sn15.5 thin film at the austenite-martensite transition
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2015 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 91, no 21, 214417Article in journal (Refereed) Published
Abstract [en]

An austenite-martensite transition was observed in a 100-nm-thick Ni51.6Mn32.9Sn15.5 film by temperature-dependent resistivity and magnetization measurements, revealing a martensite starting temperature of M-S approximate to 260 K. The influence of the structural phase transition on the electronic structure and the magnetic properties was studied element specifically employing temperature-dependent x-ray-absorption spectroscopy and x-ray magnetic circular dichroism. In addition, density functional theory calculations have been performed to study the electronic and magnetic properties of both phases. It is shown that off-stoichiometric Ni-Mn-Sn alloys can exhibit a substantial magnetocrystalline anisotropy energy in the martensite phase. For Mn a change of the electronic structure and a strong increase of the ratio of orbital to spin magnetic moment m(l)/m(S) can be observed, whereas for Ni nearly no changes occur. Applying an external magnetic field of B = 3 T reverses the change of the electronic structure of Mn and reduces the ratio of m(l)/m(S) from 13.5 to approximate to 1 % indicating a field-induced reverse martensitic transition.

Place, publisher, year, edition, pages
2015. Vol. 91, no 21, 214417
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-256994DOI: 10.1103/PhysRevB.91.214417ISI: 000355967300005OAI: oai:DiVA.org:uu-256994DiVA: diva2:832834
Available from: 2015-06-30 Created: 2015-06-29 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Herper, Heike C.

Search in DiVA

By author/editor
Herper, Heike C.
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 739 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf