uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulating Pitching Blade With Free Vortex Model Coupled With Dynamic Stall Model for Conditions of Straight Bladed Vertical Axis Turbines
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
2015 (English)In: Journal of solar energy engineering, ISSN 0199-6231, E-ISSN 1528-8986, Vol. 137, no 4, 041008Article in journal (Refereed) Published
Abstract [en]

This study is on the straight bladed vertical axis turbines (VATs), which can be utilized for both wind and marine current energy. VATs have the potential of lower installation and maintenance cost. However, complex unsteady fluid mechanics of these turbines imposes significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions, and it is in the focus of the study. The dynamic stall effects are very important for VATs, since they are usually passively controlled through the dynamic stall. A free vortex model is used to calculated unsteady attached flow, while the separated flow is handled by the dynamic stall model. This is compared to the model based solely on the Leishman-Beddoes algorithm. The results are assessed against the measured data on pitching airfoils. A comparison of force coefficients between the simulations and experiments is done at the conditions similar to the conditions of H-rotor type VATs.

Place, publisher, year, edition, pages
2015. Vol. 137, no 4, 041008
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:uu:diva-258739DOI: 10.1115/1.4030674ISI: 000356966700008OAI: oai:DiVA.org:uu-258739DiVA: diva2:842577
Funder
VINNOVA
Available from: 2015-07-21 Created: 2015-07-20 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Aerodynamics of Vertical Axis Wind Turbines: Development of Simulation Tools and Experiments
Open this publication in new window or tab >>Aerodynamics of Vertical Axis Wind Turbines: Development of Simulation Tools and Experiments
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis combines measurements with the development of simulation tools for vertical axis wind turbines (VAWT). Numerical models of aerodynamic blade forces are developed and validated against experiments. The studies were made on VAWTs which were operated at open sites. Significant progress within the modeling of aerodynamics of VAWTs has been achieved by the development of new simulation tools and by conducting experimental studies.        

An existing dynamic stall model was investigated and further modified for the conditions of the VAWT operation. This model was coupled with a streamtube model and assessed against blade force measurements from a VAWT with curved blades, operated by Sandia National Laboratories. The comparison has shown that the accuracy of the streamtube model has been improved compared to its previous versions. The dynamic stall model was further modified by coupling it with a free vortex model. The new model has become less dependent on empirical constants and has shown an improved accuracy.    

Unique blade force measurements on a 12 kW VAWT were conducted. The turbine was operated north of Uppsala. Load cells were used to measure the forces on the turbine. A comprehensive analysis of the measurement accuracy has been performed and the major error sources have been identified.

The measured aerodynamic normal force has been presented and analyzed for a wide range of operational conditions including dynamic stall, nominal operation and the region of high flow expansion. The improved vortex model has been validated against the data from the new measurements. The model agrees quite well with the experiments for the regions of nominal operation and high flow expansion. Although it does not reproduce all measurements in great detail, it is suggested that the presented vortex model can be used for preliminary estimations of blade forces due to its high computational speed and reasonable accuracy.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 86 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1274
Keyword
wind power, vertical axis turbine, H-rotor, simulations, streamtube model, vortex model, dynamic stall, measurements, blade, force
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-260573 (URN)978-91-554-9307-3 (ISBN)
Public defence
2015-10-09, Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2015-09-17 Created: 2015-08-20 Last updated: 2015-10-01

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Dyachuk, EduardGoude, AndersBernhoff, Hans

Search in DiVA

By author/editor
Dyachuk, EduardGoude, AndersBernhoff, Hans
By organisation
Electricity
In the same journal
Journal of solar energy engineering
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 640 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf