uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mitigation of MHD induced fast-ion redistribution in MAST and implications for MAST-Upgrade design
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
2015 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 1, 013021Article in journal (Refereed) Published
Abstract [en]

The phenomenon of the redistribution of neutral beam fast ions due to magnetohydrodynamic (MHD) activity in plasma has been observed on many tokamaks and more recently has been a focus of research on MAST (Turnyanskiy et al 2013 Nucl. Fusion 53 053016). n = 1 fishbone modes are observed to cause a large decrease in the neutron emission rate indicating the existence of a significant perturbation of the fast-ion population in the plasma. Theoretical work on fishbone modes states that the fast-ion distribution itself acts as the source of free energy driving the modes that cause the redistribution. Therefore a series of experiments have been carried out on MAST to investigate a range of plasma densities at two neutral-beam power levels to determine the region within this parameter space in which fishbone activity and consequent fast-ion redistribution is suppressed. Analysis of these experiments shows complete suppression of fishbone activity at high densities with increasing activity and fast-ion redistribution at lower densities and higher neutral-beam power, accompanied by strong evidence that the redistribution effect primarily affects a specific region in the plasma core with a weaker effect over a wider region of the plasma. The results also indicate the existence of correlations between gradients in the modelled fast-ion distribution function, the amplitude and growth rate of the fishbone modes, and the magnitude of the redistribution effect. The same analysis has been carried out on models of MAST-Upgrade baseline plasma scenarios to determine whether significant fast-ion redistribution due to fishbone modes is likely to occur in that device. A simple change to the neutral-beam injector geometry is proposed which is shown to have a significant mitigating effect in terms of the fishbone mode drive and is therefore expected to allow effective plasma heating and current drive over a wider range of plasma conditions in MAST-Upgrade.

Place, publisher, year, edition, pages
2015. Vol. 55, no 1, 013021
Keyword [en]
neutral-beam injection, MAST, MHD, fast ions
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-259181DOI: 10.1088/0029-5515/55/1/013021ISI: 000357595900015OAI: oai:DiVA.org:uu-259181DiVA: diva2:843580
Available from: 2015-07-29 Created: 2015-07-29 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Cecconello, MarcoKlimek, Iwona

Search in DiVA

By author/editor
Cecconello, MarcoKlimek, Iwona
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 903 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf