uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fusidic acid inhibition of EF-G- and RRF-promoted recycling of the bacterial ribosome
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-258989OAI: oai:DiVA.org:uu-258989DiVA: diva2:844278
Available from: 2015-08-04 Created: 2015-07-23 Last updated: 2015-10-01
In thesis
1. Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome
Open this publication in new window or tab >>Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The GTPase elongation factor G (EF-G) is an important player in the complex process of protein synthesis by bacterial ribosomes. Although extensively studied much remains to be learned about this fascinating protein. In the elongation phase, after incorporation of each amino acid into the growing peptide chain, EF-G translocates the ribosome along the mRNA template. In the recycling phase, when the synthesis of a protein has been completed, EF-G, together with ribosome recycling factor (RRF), splits the ribosome into its subunits. We developed the first in vitro assay for measuring the average time of a complete translocation step at any position along the mRNA. Inside the open reading frame, at saturating EF-G concentration and low magnesium ion concentration, translocation rates were fast and compatible with elongation rates observed in vivo. We also determined the complete kinetic mechanism for EF-G- and RRF-dependent splitting of the post-termination ribosome. We showed that splitting occurs only when RRF binds before EF-G and that the rate and GTP consumption of the reaction varies greatly with the factor concentrations.

The antibiotic fusidic acid (FA) inhibits bacterial protein synthesis by binding to EF-G when the factor is ribosome bound, during translocation and ribosome recycling. We developed experimental methods and a theoretical framework for analyzing the effect of tight-binding inhibitors like FA on protein synthesis. We found that FA targets three different states during each elongation cycle and that it binds to EF-G on the post-termination ribosome both in the presence and absence of RRF. The stalling time of an FA-inhibited ribosome is about hundred-fold longer than the time of an uninhibited elongation cycle and therefore each binding event has a large impact on the protein synthesis rate and may induce queuing of ribosomes on the mRNA. Although ribosomes in the elongation and the recycling phases are targeted with similar efficiency, we showed that the main effect of FA in vivo is on elongation. Our results may serve as a basis for modelling of EF-G function and FA inhibition inside the living cell and for structure determination of mechanistically important intermediate states in translocation and ribosome recycling.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 60 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1268
Keyword
Protein synthesis, Elongation factor G, Translocation, Ribosome recycling, Fusidic acid
National Category
Biochemistry and Molecular Biology
Research subject
Biology with specialization in Molecular Biotechnology
Identifiers
urn:nbn:se:uu:diva-258990 (URN)978-91-554-9289-2 (ISBN)
Public defence
2015-09-25, B22, BMC, Husargatan 3, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2015-09-04 Created: 2015-07-23 Last updated: 2015-10-01

Open Access in DiVA

No full text

By organisation
Structure and Molecular Biology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 350 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf