uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Raman spectra analysis and comparison of Neoproterozoic organic-walled mesofossils
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Palaeobiology.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Palaeobiology.
2012 (English)In: The 2012 Fermor Meeting of the Geological Society: The Neoproterozoic Era: Evolution, Glaciation, Oxygenation / [ed] Fairchild I., Condon D., Lenton T., Shields-Zhou G., Brasier M.D., London, 2012, Vol. 1, 86- p.Conference paper, Poster (Refereed)
Abstract [en]

Skeletal material first appears in the rock record in the terminal Ediacaran, leaving most of the Earth’s history only to minute organic fossils. Aside from abundant acritarchs (unicellular organic-walled phytoplankton) present from at least ~2.5 Ga, other Proterozoic organic fossils of complex (eukaryotic) organisms include fungi and macroscopic algae of still debated taxonomy. Often preserved as flattened carbonaceous filaments in several morphologies: (1) rounded, (2) stick-like elongate and (3) branching, these Neoproterozoic fossils, including Chuaria, Morania, Beltanelloides, Vendotaenia, possess limited characters and differ little in gross morphology. As a result, other methods are needed to elucidate their biological affinities and, ultimately, phylogeny.

Here we present the comparison of the Raman spectra analysis of different macroalgal genera from Yakutia, Siberia, as well as that of a putative polychaete Sabellidites from the East European Platform, dated to the early Cryogenian (840-700 Ma) and lowermost Cambrian respectively.

Data from the vibrational modes of organic molecules from the wall of unmineralised organisms reveal their chemistry and partially wall ultrastructure, presumably an indication of their relationships. Polyaromatic chain hydrocarbons and n-aliphatic pyrolysates suggest algal affinity for some of the Neoproterozoic organic problematica, yet most of the Raman spectra results are still difficult to fully identify, partially owing to the thermal maturity of the host rocks. However, there are clear differences between various groups, differentiating between parts of a single plexus (cf previous studies of Chuaria-Tawuia suggesting them to be components of a multicellular plant) and elements from other taxa. Additionally, the distinct organic matter spectra of Chuaria and Sabellidites indicate that Raman spectroscopy could be a useful method in identifying different branches of the early eukaryotes.

As they are usually shallow-water and dependant on sunlight, the record of sturdy photosynthetic macroorganisms in the  Neoproterozoic strengthens the evidence that limits the extent of the harsh environmental conditions during the Cryogenian period, at least during the Kaigas and Sturtian glaciations.

Place, publisher, year, edition, pages
London, 2012. Vol. 1, 86- p.
Keyword [en]
Neoproterozoic, Raman spectroscopy, carbonaceous fossils, Siberia
National Category
Research subject
Earth Science with specialization in Historical Geology and Palaeontology
URN: urn:nbn:se:uu:diva-259533OAI: oai:DiVA.org:uu-259533DiVA: diva2:844717
Fermor 2012: The Neoproterozoic Era: Evolution, Glaciation, Oxygenation, 19-21 September, London, UK
Swedish Research Council, 621- 462 2012-1669
Available from: 2015-08-07 Created: 2015-08-07 Last updated: 2015-09-22

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Agić, Heda
By organisation

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 306 hits
ReferencesLink to record
Permanent link

Direct link