uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt156_j_idt158",{id:"formSmash:upper:j_idt156:j_idt158",widgetVar:"widget_formSmash_upper_j_idt156_j_idt158",target:"formSmash:upper:j_idt156:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Counterexamples to a monotonicity conjecture for the threshold pebbling numberPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: Discrete Mathematics, ISSN 0012-365X, E-ISSN 1872-681X, Vol. 312, no 15, p. 2401-2405Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 312, no 15, p. 2401-2405
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-260489OAI: oai:DiVA.org:uu-260489DiVA, id: diva2:847302
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt483",{id:"formSmash:j_idt483",widgetVar:"widget_formSmash_j_idt483",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt489",{id:"formSmash:j_idt489",widgetVar:"widget_formSmash_j_idt489",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt495",{id:"formSmash:j_idt495",widgetVar:"widget_formSmash_j_idt495",multiple:true});
##### Funder

Swedish Research Council
Available from: 2015-08-19 Created: 2015-08-19 Last updated: 2017-12-04

Graph pebbling considers the problem of transforming configurations of discrete pebbles to certain target configurations on the vertices of a graph, using the so-called pebbling move, in which two pebbles are removed from a vertex and one is placed on a neighbouring vertex. Given a graph G, the pebbling number pi (G) is the least t such that every initial distribution of t pebbles at the vertices of G is solvable, that is for every target vertex v, there is some list of pebbling moves that ends with v having a pebble. Given a graph sequence (G(n)), the pebbling threshold tau (G(n)) is a sequence (a(n)) such that t = a(n) is the smallest number of pebbles such that a random configuration of t pebbles on the vertices of G(n) is solvable with probability at least 1/2, in the probabilistic model where each configuration of t pebbles on the vertices of G(n) is selected uniformly at random. This paper provides counterexamples to the following monotonicity conjecture stated by Hurlbert et al.: If (G(n)) and (H(n)) are graph sequences such that pi(G(n)) <= pi(H(n)), then it holds that tau(G(n)) is an element of O(tau(H(n)).

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1294",{id:"formSmash:j_idt1294",widgetVar:"widget_formSmash_j_idt1294",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1365",{id:"formSmash:lower:j_idt1365",widgetVar:"widget_formSmash_lower_j_idt1365",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1366_j_idt1370",{id:"formSmash:lower:j_idt1366:j_idt1370",widgetVar:"widget_formSmash_lower_j_idt1366_j_idt1370",target:"formSmash:lower:j_idt1366:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});