uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solutions of Weinstein equations representable by Bessel Poisson integrals of BMO functions
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
2015 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 431, no 1, 440-470 p.Article in journal (Refereed) Published
Abstract [en]

We consider the Weinstein type equation L(lambda)u = 0 on (0, infinity) X (0, infinity), where L-lambda= delta(2)(t) + delta-lambda(lambda-1)/x(2), In this paper we characterize the solutions of L(lambda)u = = 0 on (0, infinity) x (0, infinity) representable by Bessel-Poisson integrals of BMO-functions as the ones satisfying certain Carleson properties.

Place, publisher, year, edition, pages
2015. Vol. 431, no 1, 440-470 p.
Keyword [en]
Weinstein equation, Bessel Poisson integral, BMO, Carleson measure
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:uu:diva-260264DOI: 10.1016/j.jmaa.2015.05.069ISI: 000357441100024OAI: oai:DiVA.org:uu-260264DiVA: diva2:847862
Available from: 2015-08-21 Created: 2015-08-18 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Castro, Alejandro J.

Search in DiVA

By author/editor
Castro, Alejandro J.
By organisation
Analysis and Probability Theory
In the same journal
Journal of Mathematical Analysis and Applications
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 609 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf