uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Haptics-assisted Virtual Planning of Bone, Soft Tissue, and Vessels in Fibula Osteocutaneous Free Flaps
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Plastic Surgery.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Plastic Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Oral and Maxillofacial Surgery.
Show others and affiliations
2015 (English)In: Plastic and Reconstructive Surgery - Global Open, ISSN 2169-7574, Vol. 3, no 8, e479Article in journal (Refereed) Published
Abstract [en]

Background: Virtual surgery planning has proven useful for reconstructing head and neck defects by fibula osteocutaneous free flaps (FOFF). Benefits include improved healing, function, and aesthetics, as well as cost savings. But available virtual surgery planning systems incorporating fibula in craniomaxillofacial reconstruction simulate only bone reconstruction without considering vessels and soft tissue.

Methods: The Haptics-Assisted Surgery Planning (HASP) system incorporates bone, vessels, and soft tissue of the FOFF in craniomaxillofacial defect reconstruction. Two surgeons tested HASP on 4 cases they had previously operated on: 3 with composite mandibular defects and 1 with a composite cervical spine defect. With the HASP stereographics and haptic feedback, using patient-specific computed tomography angiogram data, the surgeons planned the 4 cases, including bone resection, fibula design, recipient vessels selection, pedicle and perforator location selection, and skin paddle configuration.

Results: Some problems encountered during the actual surgery could have been avoided as they became evident with HASP. In one case, the fibula reconstruction was incomplete because the fibula had to be reversed and thus did not reach the temporal fossa. In another case, the fibula had to be rotated 180 degrees to correct the plate and screw placement in relation to the perforator. In the spinal case, difficulty in finding the optimal fibula shape and position required extra ischemia time.

Conclusions: The surgeons found HASP to be an efficient planning tool for FOFF reconstructions. The testing of alternative reconstructions to arrive at an optimal FOFF solution preoperatively potentially improves patient function and aesthetics and reduces operating room time.

Place, publisher, year, edition, pages
Wolters Kluwer, 2015. Vol. 3, no 8, e479
National Category
Medical Image Processing Surgery
Research subject
Computerized Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-260771DOI: 10.1097/GOX.0000000000000447OAI: oai:DiVA.org:uu-260771DiVA: diva2:848386
Available from: 2015-08-24 Created: 2015-08-24 Last updated: 2016-01-20Bibliographically approved
In thesis
1. Haptics with Applications to Cranio-Maxillofacial Surgery Planning
Open this publication in new window or tab >>Haptics with Applications to Cranio-Maxillofacial Surgery Planning
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Virtual surgery planning systems have demonstrated great potential to help surgeons achieve a better functional and aesthetic outcome for the patient, and at the same time reduce time in the operating room resulting in considerable cost savings. However, the two-dimensional tools employed in these systems today, such as a mouse and a conventional graphical display, are difficult to use for interaction with three-dimensional anatomical images. Therefore surgeons often outsource virtual planning which increases cost and lead time to surgery.

Haptics relates to the sense of touch and haptic technology encompasses algorithms, software, and hardware designed to engage the sense of touch. To demonstrate how haptic technology in combination with stereo visualization can make cranio-maxillofacial surgery planning more efficient and easier to use, we describe our haptics-assisted surgery planning (HASP) system. HASP supports in-house virtual planning of reconstructions in complex trauma cases, and reconstructions with a fibula osteocutaneous free flap including bone, vessels, and soft-tissue in oncology cases. An integrated stable six degrees-of-freedom haptic attraction force model, snap-to-fit, supports semi-automatic alignment of virtual bone fragments in trauma cases. HASP has potential beyond this thesis as a teaching tool and also as a development platform for future research.

In addition to HASP, we describe a surgical bone saw simulator with a novel hybrid haptic interface that combines kinesthetic and vibrotactile feedback to display both low frequency contact forces and realistic high frequency vibrations when a virtual saw blade comes in contact with a virtual bone model. 

We also show that visuo-haptic co-location shortens the completion time, but does not improve the accuracy, in interaction tasks performed on two different visuo-haptic displays: one based on a holographic optical element and one based on a half-transparent mirror. 

Finally, we describe two prototype hand-worn haptic interfaces that potentially may expand the interaction capabilities of the HASP system. In particular we evaluate two different types of piezo-electric motors, one walking quasi-static motor and one traveling-wave ultrasonic motor for actuating the interfaces.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 79 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1289
Keyword
medical image processing, haptics, haptic rendering, haptic gripper, visuo-haptic co-location, vibrotactile feedback, surgery simulation, virtual surgery planning, cranio-maxillofacial surgery
National Category
Medical Image Processing Human Computer Interaction
Research subject
Computerized Image Processing
Identifiers
urn:nbn:se:uu:diva-262378 (URN)978-91-554-9339-4 (ISBN)
Public defence
2015-10-16, Room 2247, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2015-09-25 Created: 2015-09-14 Last updated: 2015-10-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Olsson, PontusNysjö, FredrikRodríguez-Lorenzo, AndrésThor, AndreasHirsch, Jan-MichaélCarlbom, Ingrid B.

Search in DiVA

By author/editor
Olsson, PontusNysjö, FredrikRodríguez-Lorenzo, AndrésThor, AndreasHirsch, Jan-MichaélCarlbom, Ingrid B.
By organisation
Division of Visual Information and InteractionComputerized Image Analysis and Human-Computer InteractionPlastic SurgeryOral and Maxillofacial Surgery
Medical Image ProcessingSurgery

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 538 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf