uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Automated extraction and labelling of the arterial tree from whole-body MRA data
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
Show others and affiliations
2015 (English)In: Medical Image Analysis, ISSN 1361-8415, E-ISSN 1361-8423, Vol. 24, no 1, 28-40 p.Article in journal (Refereed) Published
Abstract [en]

In this work, we present a fully automated algorithm for extraction of the 3D arterial tree and labelling the tree segments from whole-body magnetic resonance angiography (WB-MRA) sequences. The algorithm developed consists of two core parts (i) 3D volume reconstruction from different stations with simultaneous correction of different types of intensity inhomogeneity, and (ii) Extraction of the arterial tree and subsequent labelling of the pruned extracted tree. Extraction of the arterial tree is performed using the probability map of the "contrast" class, which is obtained as one of the results of the inhomogeneity correction scheme. We demonstrate that such approach is more robust than using the difference between the pre- and post-contrast channels traditionally used for this purpose. Labelling the extracted tree is performed by using a combination of graph-based and atlas-based approaches. Validation of our method with respect to the extracted tree was performed on the arterial tree subdivided into 32 segments, 82.4% of which were completely detected, 11.7% partially detected, and 5.9% were missed on a cohort of 35 subjects. With respect to automated labelling accuracy of the 32 segments, various registration strategies were investigated on a training set consisting of 10 scans. Further analysis on the test set consisting of 25 data sets indicates that 69% of the vessel centerline tree in the head and neck region, 80% in the thorax and abdomen region, and 84% in the legs was accurately labelled to the correct vessel segment. These results indicate clinical potential of our approach in enabling fully automated and accurate analysis of the entire arterial tree. This is the first study that not only automatically extracts the WB-MRA arterial tree, but also labels the vessel tree segments.

Place, publisher, year, edition, pages
2015. Vol. 24, no 1, 28-40 p.
National Category
Radiology, Nuclear Medicine and Medical Imaging
URN: urn:nbn:se:uu:diva-261194DOI: 10.1016/j.media.2015.05.008ISI: 000360252700003PubMedID: 26057864OAI: oai:DiVA.org:uu-261194DiVA: diva2:850009
Swedish Research Council, 2012-2330
Available from: 2015-08-31 Created: 2015-08-31 Last updated: 2015-09-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kullberg, JoelJohansson, LarsAhlström, Håkan
By organisation
In the same journal
Medical Image Analysis
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 272 hits
ReferencesLink to record
Permanent link

Direct link