uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vaccines targeting self-antigens: mechanisms and efficacy-determining parameters
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Show others and affiliations
2015 (English)In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 29, no 8, 3253-3262 p.Article in journal (Refereed) Published
Abstract [en]

We recently showed that it is possible to compromise tumor vessel function and, as a consequence, suppress growth of aggressive preclinical tumors by immunizing against the tumor vascular markers extra domain-A (ED-A) or -B (ED-B) of fibronectin, using a fusion protein consisting of the ED-A or ED-B peptide fused to bacterial thioredoxin. To address the mechanism behind fusion protein-induced immunization and the specific contribution of the different vaccine constituents to elicit an anti-self-antibody response, we immunized mice with modified or unmodified self-antigens, combined with different adjuvant components, and analyzed antibody responses by ELISA in sera. Several essential requirements to circumvent tolerance were identified: (1) a potent pattern recognition receptor agonist like an oligonucleotide containing unmethylated cytosine and guanine dinucleotides (CpG); (2) a depot adjuvant to keep the CpG at the site of injection; and (3) the presence of foreign sequences in the vaccine protein. Lack of either of these factors abolished the anti-self-response (P = 0.008). In mice genetically deficient for type I IFN signaling, there was a 60% reduction in the anti-self-response compared with wildtype (P = 0.011), demonstrating a key role of this pathway in CpG-induced circumvention of self-tolerance. Identification of these mechanistic requirements to generate a potent anti-self-immune response should significantly aid the design of efficient, specific, and safe therapeutic cancer vaccines.

Place, publisher, year, edition, pages
2015. Vol. 29, no 8, 3253-3262 p.
Keyword [en]
cancer, ED-B of fibronectin, adjuvant, CpG, type I IFN
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:uu:diva-261251DOI: 10.1096/fj.15-271502ISI: 000358796900014PubMedID: 25868727OAI: oai:DiVA.org:uu-261251DiVA: diva2:850422
Funder
Swedish Cancer SocietySwedish Research Council
Available from: 2015-09-01 Created: 2015-08-31 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Saupe, FalkFemel, JuliaCedervall, JessicaOlsson, Anna-Karin

Search in DiVA

By author/editor
Saupe, FalkFemel, JuliaCedervall, JessicaOlsson, Anna-Karin
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
The FASEB Journal
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 680 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf