uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Closo-dodecaborate(2-) as a linker for iodination of macromolecules: Aspects on conjugation chemistry and biodistribution
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology. (BMS)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology. (BMS)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology. (BMS)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology. (BMS)
Show others and affiliations
1999 (English)In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 10, no 3, 338-45 p.Article in journal (Refereed) Published
Abstract [en]

Boron-containing compounds like closo-dodecaborate(2-) are in theory suitable for radioactive labeling with halogens. The boron-halogen bond is stronger than carbon-halogen bond and is not likely to be recognized by deiodinating enzymes in vivo. Peptides and proteins may be conjugated with various closo-dodecaborate(2-)-containing ligands, and thereafter, the conjugate can be iodinated. Since closo-dodecaborate(2-) is more avidly iodinated than tyrosine in moderately acidic media, such conjugates may be directly labeled on the boron part with radioisotopes of iodine using the standard Chloramine-T procedure. Mercapto-undecahydro-closo-dodecaborate(2-) (BSH) was reacted with the double bond of allyldextran to form a boronated dextran compound of the molecular size of about 70 kDa. This compound, in the text denoted as Dx-BS, and cesium dodecahydro-closo-dodecaborate(2-) were labeled using iodine-125. The two compounds were administered to rats in order to study their in vivo stability. The results indicate that iodinated Dx-BS is stable for about 20 h in vivo. The degradation rate, as indicated by thyroid uptake, was found low. [125I]Iodo-closo-dodecaborate(2-), which is a possible degradation product of [125I]Dx-BS-I, was rapidly excreted in urine without significant accumulation in any organ.

Place, publisher, year, edition, pages
1999. Vol. 10, no 3, 338-45 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-57199DOI: 10.1021/bc980033sPubMedID: 10346862OAI: oai:DiVA.org:uu-57199DiVA: diva2:85108
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Tolmachev, VladimirOrlova, Anna

Search in DiVA

By author/editor
Tolmachev, VladimirOrlova, Anna
By organisation
Department of Oncology, Radiology and Clinical Immunology
In the same journal
Bioconjugate chemistry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 623 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf