uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hysteretic dynamics of active particles in a periodic orienting field
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Applied Mathematics and Statistics.
2015 (English)In: Journal of the Royal Society Interface, ISSN 1742-5689, E-ISSN 1742-5662, Vol. 12, no 108, 20150015Article in journal (Refereed) Published
Abstract [en]

Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of synthetic active particles to crowd or opinion dynamics.

Place, publisher, year, edition, pages
2015. Vol. 12, no 108, 20150015
Keyword [en]
active motion, collective motion, swarm, hysteresis
National Category
Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-261305DOI: 10.1098/rsif.2015.0015ISI: 000358824600033PubMedID: 26040594OAI: oai:DiVA.org:uu-261305DiVA: diva2:851109
Available from: 2015-09-03 Created: 2015-09-01 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Romensky, Maksym

Search in DiVA

By author/editor
Romensky, Maksym
By organisation
Applied Mathematics and Statistics
In the same journal
Journal of the Royal Society Interface
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 520 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf