uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
2015 (English)In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 528, 1-16 p.Article in journal (Refereed) Published
Abstract [en]

This study aims to provide model estimates of changes in hydrological elements, such as EvapoTranspiration (ET) and runoff, in Southern Africa in the near future until 2029. The climate change scenarios are projected by a high-resolution Regional Climate Model (RCM), RegCM4, which is the latest version of this model developed by the Abdus Salam International Centre for Theoretical Physics (ICTP). The hydrological projections are performed by using a large-scale hydrological model (WASMOD-D), which has been tested and customized on this region prior to this study. The results reveal that (1) the projected temperature shows an increasing tendency over Southern Africa in the near future, especially eastward of 25 degrees E, while the precipitation changes are varying between different months and sub-regions; (2) an increase in runoff (and ET) was found in eastern part of Southern Africa, i.e. Southern Mozambique and Malawi, while a decrease was estimated across the driest region in a wide area encompassing Kalahari Desert, Namibia, southwest of South Africa and Angola; (3) the strongest climate change signals are found over humid tropical areas, i.e. north of Angola and Malawi and south of Dem Rep of Congo; and (4) large spatial and temporal variability of climate change signals is found in the near future over Southern Africa. This study presents the main results of work-package 2 (WP2) of the 'Socioeconomic Consequences of Climate Change in Sub-equatorial Africa (SoCoCA)' project, which is funded by the Research Council of Norway.

Place, publisher, year, edition, pages
2015. Vol. 528, 1-16 p.
Keyword [en]
Large-scale hydrological model, Climate change, RegCM4, Southern Africa, Near future
National Category
Oceanography, Hydrology and Water Resources Climate Research
Identifiers
URN: urn:nbn:se:uu:diva-261225DOI: 10.1016/j.jhydrol.2015.05.028ISI: 000358968200001OAI: oai:DiVA.org:uu-261225DiVA: diva2:852146
Available from: 2015-09-08 Created: 2015-08-31 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Xu, Chong-Yu

Search in DiVA

By author/editor
Xu, Chong-Yu
By organisation
LUVAL
In the same journal
Journal of Hydrology
Oceanography, Hydrology and Water ResourcesClimate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 356 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf