uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Matching Diethyl Terephthalate with n-Doped Conducting Polymers
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-5496-9664
Show others and affiliations
2015 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 33, 18956-18963 p.Article in journal (Refereed) Published
Abstract [en]

The combination of small, high charge capacity molecules as pendant groups with a conducting polymer backbone having good electronic conductivity upon doping, gives the possibility to design a high capacity conducting redox polymer material for electric energy storage applications. The desired synergetic effect of the two components requires energy matching as well as chemical compatibility of the pendant group and the polymer backbone. Here we investigate the matching of diethyl terephthalate (DeT) with the thiophene-based conducting polymers polythiophene (PT), poly(3,4-ethylenedioxythiophene) (PEDOT), and polyphenylthiophene. We show that a stable and well-defined electrochemical response of DeT is achieved, together with all conducting polymers except for PT in tetrabutylammonium hexafluorophosphate electrolyte, indicating good energy match as well as chemical compatibility between DeT and polymers. By varying the size of ammonium cations in the electrolytes, we further show how this size affects the conductivity and the cycling stability of the polymers and also that the n-doping performance of all conducting polymers can be improved by the use of smaller alkyl ammonium cations. On the basis of these results, we suggest that PEDOT and PT are suitable candidates for a polymer backbone in conducting redox polymers with DeT pendant groups.

Place, publisher, year, edition, pages
2015. Vol. 119, no 33, 18956-18963 p.
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-262423DOI: 10.1021/acs.jpcc.5b05067ISI: 000360026200015OAI: oai:DiVA.org:uu-262423DiVA: diva2:854700
Funder
Swedish Foundation for Strategic Research Swedish Research CouncilCarl Tryggers foundation Swedish Energy Agency
Available from: 2015-09-17 Created: 2015-09-15 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
Open this publication in new window or tab >>Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electrode materials, as sustainable and environmental benign alternatives to inorganic electrode materials, show great promise for achieving cheap, light, versatile and disposable devices for electrical energy storage applications. Conducting redox polymers (CRPs) are a new class of organic electrode materials where the charge storage capacity is provided by the redox chemistry of functional pendent groups and electronic conductivity is provided by the doped conducting polymer backbone, enabling the production of energy storage devices with high charge storage capacity and high power capability. This pendant-conducting polymer backbone combination can solve two of the main problems associated with organic molecule-based electrode materials, i.e. the dissolution of the active material and the sluggish charge transport within the material. In this thesis, diethyl terephthalate and polythiophenes were utilized as the pendant and the backbone, respectively. The choice of pendant-conducting polymer backbone combination was based on potential match between the two moieties, i.e. the redox reaction of terephthalate pendent groups and the n-doping of polythiophene backbone occur in the same potential region. The resulting CRPs exhibited fast charge transport within the polymer films and low activation energies involved charge propagation through these materials. In the design of these CRPs an unconjugated link between the pendant and the backbone was found to be advantageous in terms of the polymerizability of the monomers and for the preservation of individual redox activity of the pendants and the polymer chain in CRPs. The functionalized materials were specifically designed as anode materials for energy storage applications and, although insufficient cycling stability was observed, the work presented in this thesis demonstrates that the combination of redox active functional groups with conducting polymers, forming CRPs, shows promise for the development of organic matter-based electrical energy storage materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 60 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1437
Keyword
conducting polymers, terephthalate, polythiophene, PEDOT, conductance
National Category
Nano Technology
Identifiers
urn:nbn:se:uu:diva-304628 (URN)978-91-554-9715-6 (ISBN)
Public defence
2016-11-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2016-11-08 Created: 2016-10-06 Last updated: 2016-11-16
2.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Yang, LiHuang, XiaoGogoll, AdolfStrömme, MariaSjödin, Martin

Search in DiVA

By author/editor
Yang, LiHuang, XiaoGogoll, AdolfStrömme, MariaSjödin, Martin
By organisation
Nanotechnology and Functional MaterialsDepartment of Chemistry - BMC
In the same journal
The Journal of Physical Chemistry C
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1192 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf