uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Kerr effect enhancement in Ni antidot hexagonal nanostructures
(Materials Physics)
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
Show others and affiliations
2013 (English)Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

Angular resolved transverse magneto-optical Kerr effect (TMOKE) measurements provide a versatile tool for optical characterization of plasmonic nanostructures and show how plasmons couple to the applied magnetic field. These measurements show TMOKE enhancements that are closely connected to the plasmonic resonances of the nanostructures. This is seen even without noble metal layers that are traditionally used as the most important enhancing parameter. Measurements with these methods on hexagonal arrays of circular holes in thin Ni films (Ni covered with Au [1] as well as pure Ni [2]) are presented and compared with reference Ni films. The hole sizes of the two samples are 250 nm for the Au covered Ni and 220 nm for the pure Ni, the periodicities are 470 nm for the Au covered and 450 nm for the pure Ni. The TMOKE asymmetry coincides well with the plasmonic resonance showing a large increase of the signal. Drops in reflectivity, enhanced magneto-optical activity and transmission are reported which are closely connected with the formation of surface plasmons. One signature feature of plasmons, the drop in reflectivity followed by the Fano resonance, is shown to yield an increased magneto-optical asymmetry and therefore an increased sensitivity in the measurement even though the signal-to-noise ratio from the light source is significantly decreased. By comparing the two cases one can see that even though the plasmonic signal (in reflectivity) is much smaller for the pure Ni (less than 10% change in reflectivity compared to that of the Au covered Ni) the magneto-plasmonic signal is only about 20% smaller (0.048% compared to 0.06% for the Au covered Ni) which shows that magneto-optical methods have a higher sensitivity to the plasmonic states and can also be used to characterize the magneto-plasmonic properties. With this type of patterned nanostructures, we have shown that it is possible to enhance the magneto-optical activity due to the coupling to the plasmonic resonance in pure magnetic Ni (self-passivation thickness ~1nm). This enables purely magnetic plasmonic structures (no noble metal required) and paves the way for circuits where the applied magnetization can be a great tool for controlling, enhancing and sensing the plasmonic effects.

[1] E. Th. Papaioannou et al., Opt. Express 19, 23867 (2011)

[2] E. Melander et al., Appl. Phys. Lett. 101, 063107 (2012)

Place, publisher, year, edition, pages
2013.
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-262653OAI: oai:DiVA.org:uu-262653DiVA: diva2:854719
Conference
The 34th PIERS The 34th PIERS, Progress In Electromagnetics Research Symposium, 12-15 August 2013, Stockholm, Sweden
Available from: 2015-09-17 Created: 2015-09-17 Last updated: 2015-10-13Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Melander, EmilÖstman, ErikKapaklis, VassiliosHjörvarsson, Björgvin

Search in DiVA

By author/editor
Melander, EmilÖstman, ErikKapaklis, VassiliosHjörvarsson, Björgvin
By organisation
Materials Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 363 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf