uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microbatteries based on 3D Li and Cu2O coated Cu nanorods
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.ORCID iD: 0000-0003-2394-287X
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
(English)Manuscript (preprint) (Other academic)
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-263480OAI: oai:DiVA.org:uu-263480DiVA: diva2:858065
Available from: 2015-09-30 Created: 2015-09-30 Last updated: 2015-11-10
In thesis
1. Insights into Electrochemical Energy Storage by use of Nanostructured Electrodes
Open this publication in new window or tab >>Insights into Electrochemical Energy Storage by use of Nanostructured Electrodes
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Template-assisted electrodeposition is a powerful technique for fabricating complex nanostructured electrodes. Through the use of pulsed-electrodeposition nanostructured electrodes of Al, Cu and Sn have been realised and subsequently coated electrochemically with V2O5, MnxO, Li, Cu2O and a polymer electrolyte. Nanorods with a multi-layered Cu2O/Cu structure have likewise been produced through electrodeposition. Nanostructured electrodes are ideal for studying electrochemical energy storage and have as such been used to investigate the electrochemistry of conversion and alloying reactions in detail.

Key properties of the Cu2O conversion reaction were found to be dependent on the particle size. Prolonged cycling was seen to induce an electrochemical milling process which reduced the particle size. This process was found to improve the cell capacity retention due to improved accessibility of the material. The redox potential at which the particles react was found to be size dependent as smaller particles reacted at lower potentials.

The Li-alloying reaction was also investigated by analysing several different alloy-forming materials. All materials exhibited a decline in capacity during cell cycling. This decline was observed to be time dependent and could as such be explained by a diffusion limited process. Moreover, the capacity losses were found to occur during partial lithiation of the electrode material leading to Li trapping in the electrode material. Li trapping was also observed for commonly used anode current collectors as the metals have some solubility for Li. Conducting boron-doped diamond electrodes were however seen to be resistant to Li diffusion and are therefore recommended as viable current collectors for anodes handling metallic lithium (i.e. Li-alloys and Li metal).

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 79 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1297
National Category
Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
urn:nbn:se:uu:diva-263482 (URN)978-91-554-9352-3 (ISBN)
Public defence
2015-11-20, Häggsalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2015-10-28 Created: 2015-09-30 Last updated: 2015-11-10

Open Access in DiVA

No full text

Authority records BETA

Rehnlund, David

Search in DiVA

By author/editor
Rehnlund, David
By organisation
Inorganic ChemistryAnalytical ChemistryStructural Chemistry
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 315 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf