uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23
Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands..
Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands..
Show others and affiliations
2015 (English)In: Brain, ISSN 0006-8950, E-ISSN 1460-2156, Vol. 138, 2537-2552 p.Article in journal (Refereed) Published
Abstract [en]

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, a-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN R212W mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN R212W mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN R212W mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.

Place, publisher, year, edition, pages
2015. Vol. 138, 2537-2552 p.
Keyword [en]
prodynorphin, opioid, glutamate, neurodegeneration, spinocerebellar ataxia
National Category
Pharmaceutical Sciences
URN: urn:nbn:se:uu:diva-264639DOI: 10.1093/brain/awv195ISI: 000361396200017PubMedID: 26169942OAI: oai:DiVA.org:uu-264639DiVA: diva2:862738
Swedish Research CouncilSwedish Research Council Formas
Available from: 2015-10-23 Created: 2015-10-15 Last updated: 2016-01-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Watanabe, HiroyukiYakovleva, TaniaBakalkin, Georgy
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 177 hits
ReferencesLink to record
Permanent link

Direct link