uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains
Univ Turku, Dept Biochem, Mol Plant Biol, FI-20014 Turku, Finland..
Univ Turku, Dept Biochem, Mol Plant Biol, FI-20014 Turku, Finland..
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Univ Turku, Dept Biochem, Mol Plant Biol, FI-20014 Turku, Finland..
Show others and affiliations
2015 (English)In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 84, no 2, 360-373 p.Article in journal (Refereed) Published
Abstract [en]

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions. Significance Statement Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Here we compare the pigment-protein megacomplexes in non-appressed thylakoids of wild type and several thylakoid regulatory mutants, and show that composition megacomplex composition is dynamically regulated according to light conditions.

Place, publisher, year, edition, pages
2015. Vol. 84, no 2, 360-373 p.
Keyword [en]
Arabidopsis thaliana, light acclimation, native gel electrophoresis, non-appressed thylakoid, phosphorylation, protein complex
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-265583DOI: 10.1111/tpj.13004ISI: 000362692000009PubMedID: 26332430OAI: oai:DiVA.org:uu-265583DiVA: diva2:866533
Funder
Swedish Research CouncilSwedish Energy AgencyKnut and Alice Wallenberg Foundation
Available from: 2015-11-03 Created: 2015-11-02 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Mamedov, Fikret

Search in DiVA

By author/editor
Mamedov, Fikret
By organisation
Molecular Biomimetics
In the same journal
The Plant Journal
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 741 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf