uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photoelectrochemical Polymerization of EDOT for Solid State Dye Sensitized Solar Cells: Role of Dye and Solvent
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
CNRS, Sorbonne Paris Cite, Inst Univ Paris Diderot Paris 7, ITODYS UMR 7086, F-75205 Paris 13, France..
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, FSB ISIC LSPM, CH-1015 Lausanne, Switzerland..
CNRS, Sorbonne Paris Cite, Inst Univ Paris Diderot Paris 7, ITODYS UMR 7086, F-75205 Paris 13, France..
Show others and affiliations
2015 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 179, 220-227 p.Article in journal (Refereed) Published
Abstract [en]

The aromatic-unit, commercially available, and cost-effective precursor 3, 4-ethylenedioxythiophene (EDOT), was employed instead of bis-EDOT to generate by in-situ photoelectrochemical polymerization (PEP) a conducting polymer-type hole conductor poly (3, 4-ethylenedioxythiophene) (PEDOT) for dye sensitized solar cell (DSC) devices. In order to conduct efficiently the PEP of EDOT, two electrolytic media, aqueous micellar and organic, and two Donor-pi-Acceptor sensitizers, were investigated. By using the electrolytic aqueous micellar medium, the PEP was efficient due to the low oxidation potential of the precursor in water. A DSC device based on PEDOT generated from aqueous PEP showed an energy conversion efficiency (eta) of 3.0% under 100 mWcm (2), higher by two orders of magnitude than that of a DSC device based on PEDOT from organic PEP (eta = 0.04%). The comparison of the properties of the as-obtained PEDOT polymers from aqueous and organic PEP by UV-VIS-NIR measurements shows the formation of PEDOT at a highly doped state from aqueous PEP. The thermodynamic and kinetic requirements for efficiency of PEP process in each medium are investigated and discussed on the basis of the light absorption abilities and electrochemical redox potentials measured for the two organic sensitizers.

Place, publisher, year, edition, pages
2015. Vol. 179, 220-227 p.
Keyword [en]
aqueous micellar electrolyte, conducting polymer, EDOT, hole conductor, solid state dye sensitized solar cell
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-265671DOI: 10.1016/j.electacta.2015.01.077ISI: 000362292200029OAI: oai:DiVA.org:uu-265671DiVA: diva2:867452
Funder
Swedish Energy AgencyStandUpSwedish Research CouncilKnut and Alice Wallenberg Foundation
Available from: 2015-11-05 Created: 2015-11-02 Last updated: 2017-12-01Bibliographically approved
In thesis
1. Organic Hole Transport Materials for Solid-State Dye-Sensitized and Perovskite Solar Cells
Open this publication in new window or tab >>Organic Hole Transport Materials for Solid-State Dye-Sensitized and Perovskite Solar Cells
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Solid-state dye-sensitized solar cells (ssDSSCs) and recently developed perovskite solar cells (PSCs) have attracted a great attention in the scientific field of photovoltaics due to their low cost, absence of solvent, simple fabrication and promising power conversion efficiency (PCE). In these types of solar cell, the dye molecule or the perovskite can harvest the light on the basis of electron excitation. Afterwards, the electron and hole are collected at the charge transport materials.

Photoelectrochemical polymerization (PEP) is employed in this thesis to synthesize conducting polymer hole transport materials (HTMs) for ssDSSCs. We have for the first time developed aqueous PEP in comparison with the conventional organic PEP with acetonitrile as solvent. This water-based PEP could potentially provide a low-cost, environmental-friendly method for efficient deposition of polymer HTM for ssDSSCs. In addition, new and simple precursors have been tested with PEP method. The effects of dye molecules on the PEP were also systematically studied, and we found that (a) the bulky structure of dye is of key importance for blocking the interfacial charge recombination; and (b) the matching of the energy levels between the dye and the precursor plays a key role in determining the kinetics of the PEP process.

In PSCs, the HTM layer is crucial for efficient charge collection and its long term stability. We have studied different series of new molecular HTMs in order to understand fundamentally the influence of alkyl chains, molecular energy levels, and molecular geometry of the HTM on the photovoltaic performance. We have identified several important factors of the HTMs for efficient PSCs, including high uniformity of the HTM capping layer, perovskite-HTM energy level matching, good HTM solubility, and high conductivity. These factors affect interfacial hole injection, hole transport, and charge recombination in PSCs. By systematical optimization, a promising PCE of 19.8% has been achieved by employing a new HTM H11. We believe that this work could provide important guidance for the future development of new and efficient HTMs for PSCs.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 83 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1408
Keyword
photoelectrochemical polymerization, PEDOT, dye, hole transport material, small molecule, perovskite solar cell
National Category
Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-300802 (URN)978-91-554-9659-3 (ISBN)
Public defence
2016-10-07, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2016-09-15 Created: 2016-08-14 Last updated: 2016-09-22

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Zhang, JinbaoBoschloo, GerritHagfeldt, Anders

Search in DiVA

By author/editor
Zhang, JinbaoBoschloo, GerritHagfeldt, Anders
By organisation
Physical Chemistry
In the same journal
Electrochimica Acta
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 835 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf