uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chemical modification of Cladophora nanocellulose to provide a non-toxic material with anticoagulant properties
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanotechnology and Functional Materials)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanotechnology and Functional Materials)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)ORCID iD: 0000-0002-5496-9664
Show others and affiliations
2015 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

Blood purification is a common procedure for treating patients with kidney failure in which an extracorporeal device filled with a porous material containing antibodies can retain toxins from the blood. In order to avoid activation and coagulation, heparin is administrated to patients; however this sulfonated polysaccharide may cause many side effects such as intense bleeding and osteoporosis. In this project nanocellulose from Cladophora green algae was used for the development of a porous material with anticoagulant properties. A periodate oxidation followed by an amine cross-linking and subsequent reduction produced dialdehyde cellulose beads ranging from 10-100 mm in diameter with improved mechanical properties and high stability in alkaline media. This material was then sulfonated to acquire anticoagulant properties and characterized by FTIR, z-potential, condutometric titration, elemental analysis and BET surface area showing that its porosity varies with the degree of sulfonation. After extensive washing, toxicology experiments were performed with a THP-1 monocyte cell line in order to examine if the material was non-toxic and could be suitable as a matrix in blood purification.

Place, publisher, year, edition, pages
2015.
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-266842OAI: oai:DiVA.org:uu-266842DiVA: diva2:868895
Conference
4th International Polysaccharide Conference (EPNOE 2015), Warsaw, Poland,19-22 October 2015
Available from: 2015-11-12 Created: 2015-11-12 Last updated: 2016-11-30Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Rocha, IgorFerraz, NataliaMihranyan, AlbertStrömme, MariaLindh, Jonas

Search in DiVA

By author/editor
Rocha, IgorFerraz, NataliaMihranyan, AlbertStrömme, MariaLindh, Jonas
By organisation
Nanotechnology and Functional Materials
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 393 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf