uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Show others and affiliations
2015 (English)In: Systematic Biology, ISSN 1063-5157, E-ISSN 1076-836X, Vol. 64, no 6, 1000-1017 p.Article in journal (Refereed) Published
Abstract [en]

Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow.

Place, publisher, year, edition, pages
2015. Vol. 64, no 6, 1000-1017 p.
Keyword [en]
Approximate Bayesian computation, demographic modeling, gene flow, gene tree, incomplete lineage sorting, introgression, phylogenomics, species tree
National Category
Evolutionary Biology
Identifiers
URN: urn:nbn:se:uu:diva-267189DOI: 10.1093/sysbio/syv045ISI: 000363168100009PubMedID: 26187295OAI: oai:DiVA.org:uu-267189DiVA: diva2:872729
Funder
EU, European Research CouncilKnut and Alice Wallenberg FoundationSwedish Research Council, 2007-8731Swedish Research Council, 2010-5650Swedish Research Council, 2013-8271
Available from: 2015-11-20 Created: 2015-11-19 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Nater, AlexanderBurri, RetoKawakami, TakeshiSmeds, LinneaEllegren, Hans

Search in DiVA

By author/editor
Nater, AlexanderBurri, RetoKawakami, TakeshiSmeds, LinneaEllegren, Hans
By organisation
Evolutionary Biology
In the same journal
Systematic Biology
Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 334 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf