uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Parametric Study of the Power Absorption for a Linear Generator Wave Energy Converter
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. (Division for Electricity)ORCID iD: 0000-0003-1832-5850
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Show others and affiliations
2015 (English)In: Journal of Ocean and Wind Energy, ISSN 0305-182X, E-ISSN 2245-408X, Vol. 4Article in journal, News item (Refereed) Published
Place, publisher, year, edition, pages
2015. Vol. 4
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
URN: urn:nbn:se:uu:diva-268486DOI: 10.17736/jowe.2015.jcr30OAI: oai:DiVA.org:uu-268486DiVA: diva2:877258
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2017-12-01
In thesis
1. Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates
Open this publication in new window or tab >>Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ocean wave energy is considered to be one of the important potential renewable energy resources for sustainable development. Various wave energy converter technologies have been proposed to harvest the energy from ocean waves. This thesis is based on the linear generator wave energy converter developed at Uppsala University. The research in this thesis focuses on the foundation optimization and the power absorption optimization of the wave energy converters and on the wave climate modelling at the Lysekil wave converter test site.

The foundation optimization study of the gravity-based foundation of the linear wave energy converter is based on statistical analysis of wave climate data measured at the Lysekil test site. The 25 years return extreme significant wave height and its associated mean zero-crossing period are chosen as the maximum wave for the maximum heave and surge forces evaluation.

The power absorption optimization study on the linear generator wave energy converter is based on the wave climate at the Lysekil test site. A frequency-domain simplified numerical model is used with the power take-off damping coefficient chosen as the control parameter for optimizing the power absorption. The results show a large improvement with an optimized power take-off damping coefficient adjusted to the characteristics of the wave climate at the test site.

The wave climate modelling studies are based on the wave climate data measured at the Lysekil test site. A new mixed distribution method is proposed for modelling the significant wave height. This method gives impressive goodness of fit with the measured wave data. A copula method is applied to the bivariate joint distribution of the significant wave height and the wave period. The results show an excellent goodness of fit for the Gumbel model. The general applicability of the proposed mixed-distribution method and the copula method are illustrated with wave climate data from four other sites. The results confirm the good performance of the mixed-distribution and the Gumbel copula model for the modelling of significant wave height and bivariate wave climate.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 58 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1447
Keyword
Wave power, Wave energy converter, Gravity-based foundation, Power absorption, Wave spectrum, Linear generator, Frequency domain, Wave climate, Ocean wave modelling, Mixed-distribution model, Bivariate distribution, Archimedean copula
National Category
Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-305870 (URN)978-91-554-9738-5 (ISBN)
Public defence
2016-12-12, Ångstrom 10132, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2016-11-18 Created: 2016-10-24 Last updated: 2016-11-28

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Li, WeiIsberg, JanEngström, JensWaters, RafaelLeijon, Mats

Search in DiVA

By author/editor
Li, WeiIsberg, JanEngström, JensWaters, RafaelLeijon, Mats
By organisation
Electricity
In the same journal
Journal of Ocean and Wind Energy
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 358 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf