uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
On The Evolution Of Magnetic White Dwarfs
Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada..
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany.;Ist Ric Solari Locarno, CH-6605 Locarno, Switzerland..
Show others and affiliations
2015 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 812, no 1, 19Article in journal (Refereed) PublishedText
Abstract [en]

We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B greater than or similar to 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (T-eff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff less than or similar to 10,000 K cool significantly slower than non-magnetic degenerates.

Place, publisher, year, edition, pages
2015. Vol. 812, no 1, 19
Keyword [en]
convection, magnetohydrodynamics (MHD), stars: evolution, stars: fundamental parameters, stars: magnetic field, white dwarfs
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:uu:diva-269260DOI: 10.1088/0004-637X/812/1/19ISI: 000364234700019OAI: oai:DiVA.org:uu-269260DiVA: diva2:882722
Available from: 2015-12-15 Created: 2015-12-15 Last updated: 2015-12-15Bibliographically approved

Open Access in DiVA

fulltext(813 kB)30 downloads
File information
File name FULLTEXT01.pdfFile size 813 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Freytag, Bernd
By organisation
Department of Physics and Astronomy
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
Total: 30 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 78 hits
ReferencesLink to record
Permanent link

Direct link