uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessing CO2 storage capacity in the Dalders Monocline of the Baltic Sea Basin using dynamic models of varying complexity
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL. Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
Show others and affiliations
2015 (English)In: International Journal of Greenhouse Gas Control, Vol. 43, 149-150 p.Article in journal (Refereed) Published
Abstract [en]

The first dynamic modeling study of CO2 geological storage in the Baltic Sea basin is presented. The focus has been on the southern part of the Dalders Monocline. The objective is to get order-of-magnitude estimates of the behavior of the formations during potential industrial scale CO2 injection and subsequent storage periods, with an emphasis on two important aspects of CO2 storage: the injection-induced pressure impact and the long-term upslope migration. In order to maximize the confidence in the model predictions, this work employs a set of different modeling approaches of varying complexity, including a semi-analytical model, a sharp-interface vertical equilibrium (VE) model and a TOUGH2-ECO2N model. The semi-analytical model provides fast estimation of the pressure buildup as well as its sensitivity to variation of the reservoir parameters. Given a certain pressure threshold, a maximum injection rate is estimated from the semi-analytical model and is then fed to the numerical models. The pressure buildup predicted by the numerical models fall close to that by the semi-analytical solution. Extensive modeling of the post-injection upslope migration and trapping evolution together with sensitivity analysis suggests that it is unlikely for CO2 to leak through the north end of the formation. Under the currently considered scenario, the dominant constraint for the storage capacity is the pressure buildup. The pressure limited capacity (Cp) of the southern Dalders Monocline for the scenario studied here is estimated to be about 100 Mt for a 50-year injection duration. Cp is found to increase with permeability as Cp ∼ k0.926. Given the knowledge of the dominant constraint for capacity, storage optimization can be specifically targeted on the injectivity issue and operational strategies can be designed to relieve the pressure buildup (e.g., by adding brine production wells, using horizontal wells).

Place, publisher, year, edition, pages
2015. Vol. 43, 149-150 p.
Keyword [en]
CO2 sequestration; Storage capacity; Numerical modeling; Semi-analytical solution; Vertical equilibrium
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:uu:diva-270275DOI: 10.1016/j.ijggc.2015.10.024ISI: 000367110200015OAI: oai:DiVA.org:uu-270275DiVA: diva2:889252
Funder
Swedish Energy AgencyEU, FP7, Seventh Framework Programme, 227286EU, FP7, Seventh Framework Programme, 282900Swedish Research Council
Available from: 2015-12-22 Created: 2015-12-22 Last updated: 2016-08-26Bibliographically approved
In thesis
1. CO2 storage in deep saline aquifers: Models for geological heterogeneity and large domains
Open this publication in new window or tab >>CO2 storage in deep saline aquifers: Models for geological heterogeneity and large domains
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[zh]
二氧化碳的深部盐水层地质封存 : 储层非均质性及大尺度模型的研究
Abstract [en]

This work presents model development and model analyses of CO2 storage in deep saline aquifers. The goal has been two-fold, firstly to develop models and address the system behaviour under geological heterogeneity, second to tackle the issues related to problem scale as modelling of the CO2 storage systems can become prohibitively complex when large systems are considered.

The work starts from a Monte Carlo analysis of heterogeneous 2D domains with a focus on the sensitivity of two CO2  storage performance measurements, namely, the injectivity index (Iinj) and storage efficiency coefficient (E), on parameters characterizing heterogeneity. It is found that E and Iinj are determined by two different parameter groups which both include correlation length (λ) and standard deviation (σ) of the permeability. Next, the issue of upscaling is addressed by modelling a heterogeneous system with multi-modal heterogeneity and an upscaling scheme of the constitutive relationships is proposed to enable the numerical simulation to be done using a coarser geological mesh built for a larger domain. Finally, in order to better address stochastically heterogeneous systems, a new method for model simulations and uncertainty analysis based on a Gaussian processes emulator is introduced. Instead of conventional point estimates this Bayesian approach can efficiently approximate cumulative distribution functions for the selected outputs which are CO2 breakthrough time and its total mass. After focusing on reservoir behaviour in small domains and modelling the heterogeneity effects in them, the work moves to predictive modelling of large scale CO2  storage systems. To maximize the confidence in the model predictions, a set of different modelling approaches of varying complexity is employed, including a semi-analytical model, a sharp-interface vertical equilibrium (VE) model and a TOUGH2MP / ECO2N model. Based on this approach, the CO2 storage potential of two large scale sites is modelled, namely the South Scania site, Sweden and the Dalders Monocline in the Baltic Sea basin.

The methodologies developed and demonstrated in this work enable improved analyses of CO2 geological storage at both small and large scales, including better approaches to address medium heterogeneity. Finally, recommendations for future work are also discussed.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 70 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1390
Keyword
CO2, Carbon Capture Storage, Storage Capacity, Injectivity, Monte Carlo, Gaussian, Permeability, Upscaling, 二氧化碳, 地質封存, 高斯仿真, 滲透係數, 非均質性, 升尺度, 存儲效能, 場地模擬, 不確定性, 壓力累積
National Category
Geosciences, Multidisciplinary
Identifiers
urn:nbn:se:uu:diva-279382 (URN)978-91-554-9625-8 (ISBN)
Public defence
2016-09-16, Hamberg, Villavägen 16, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2016-08-24 Created: 2016-03-01 Last updated: 2016-10-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Yang, ZhibingTian, LiangJoodaki, SabaFagerlund, FritjofNiemi, Auli

Search in DiVA

By author/editor
Yang, ZhibingTian, LiangJoodaki, SabaFagerlund, FritjofNiemi, Auli
By organisation
LUVAL
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 606 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf