uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A model for the evaluation of the electric field associated with the lightning-triggering rocket wire and its corona
Ecole Polytech Fed Lausanne, EMC Lab, CH-1015 Lausanne, Switzerland..
Ecole Polytech Fed Lausanne, EMC Lab, CH-1015 Lausanne, Switzerland..
Ecole Polytech Fed Lausanne, EMC Lab, CH-1015 Lausanne, Switzerland..
HEIG VD, Inst Informat & Commun Technol, Yverdon, Switzerland..
Show others and affiliations
2015 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 120, no 20Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

In this paper, we analyze the electric field at ground level during the first stage of triggered lightning experiments, i.e., during the rocket ascent and prior to the lightning initiation. At distances of some tens of meters from the triggering wire, the electric field decreases significantly, while at distances of several hundred meters, there is only a very small decrease of the electric field. Two effects determine the level of the electric field reduction: the corona layer at ground level and the corona sheath around the triggering wire. We present an analytical solution based on the charge simulation method to study the phenomenon. The model is validated by comparing its results to those obtained by numerical simulations using the finite element method. A ground space charge layer and a corona sheath around the rocket-triggered lightning wire are included in the simulation. It is shown that, depending on the charge distribution, the change of the sign of the electric field is correctly predicted by our model. The obtained reductions of the electric field are consistent with simulations and experiments presented in the literature. Moreover, the proposed analytical solution is faster, and it allows studying the influence of several parameters simultaneously, i.e., the radius of the corona sheath and the space charge layer parameters. The described analytical model allows the estimation of the corona sheath radius if the parameters of the space charge layer are known from experiment.

Place, publisher, year, edition, pages
2015. Vol. 120, no 20
National Category
Meteorology and Atmospheric Sciences Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-271042DOI: 10.1002/2015JD023373ISI: 000365433200024OAI: oai:DiVA.org:uu-271042DiVA: diva2:891095
Available from: 2016-01-05 Created: 2016-01-05 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Cooray, Vernon

Search in DiVA

By author/editor
Cooray, Vernon
By organisation
Electricity
In the same journal
Journal of Geophysical Research - Atmospheres
Meteorology and Atmospheric SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 207 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf