uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photo-induced oxidation of a dinuclear Mn-2(II,II) complex to the Mn-2(III,IV) state by inter- and intramolecular electron transfer to Ru-III tris-bipyridine
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Show others and affiliations
2002 (English)In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 91, no 1, 159-172 p.Article in journal (Refereed) Published
Abstract [en]

To model the structural and functional parts of the water oxidizing complex in Photosystem 11, a dimeric manganese(II,11) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru-II(bpy)3) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru-II(bpy), in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru-III(bpy), from the Mn-2(II,II) dimer, which then attained the Mn-2(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn-2(III,IV) state. Our data indicate that oxidation from the Mn-2(II,II) state proceeds stepwise via intermediate formation of Mn-2(II,III) and Mn-2(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn-2(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn-2(III,IV), this suggests that water is essential for the formation of the Mn-2(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem 11, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety. (C) 2002 Elsevier Science Inc. All rights reserved.

Place, publisher, year, edition, pages
2002. Vol. 91, no 1, 159-172 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-271364DOI: 10.1016/S0162-0134(02)00394-XOAI: oai:DiVA.org:uu-271364DiVA: diva2:891800
Conference
10th International Conference on Bioinorganic Chemistry
Available from: 2016-01-07 Created: 2016-01-07 Last updated: 2017-12-01

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Magnuson, AnnStyring, Stenbjörn

Search in DiVA

By author/editor
Magnuson, AnnStyring, Stenbjörn
By organisation
Molecular BiomimeticsPhysical Chemistry
In the same journal
Journal of Inorganic Biochemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 599 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf