uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Life history evolution of Galba truncatula in cooling water discharge: evidence for rapid thermal adaptation?
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Eawag, Swiss Federal Institute of Aquatic Science and Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
(English)Manuscript (preprint) (Other academic)
National Category
Evolutionary Biology
URN: urn:nbn:se:uu:diva-271554OAI: oai:DiVA.org:uu-271554DiVA: diva2:892501
Available from: 2016-01-11 Created: 2016-01-10 Last updated: 2016-02-12
In thesis
1. Climate change time machine: Adaptation to 30 years of warming in the Baltic Sea
Open this publication in new window or tab >>Climate change time machine: Adaptation to 30 years of warming in the Baltic Sea
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Earth mean surface temperature has increased by 1 °C since the industrial revolution, and this has already had considerable effects on animal and plant species. Ecological responses to the warming climate – often facilitated via phenotypic plasticity – are ubiquitous. However, even though evolution can occur rapidly there are only few examples of genetic adaptation to climate change.

In my thesis, I used a near-natural system to study if and how organisms have adapted to 30 years of warming, and how this has affected competitive species interactions. I investigated Baltic Sea populations of the aquatic snails Galba truncatula and Theodoxus fluviatilis, which had been subjected to cooling water discharge from power plants, resulting in water temperatures 4 to 10 °C higher than in the surrounding sea.

G. truncatula had high upper thermal limits and large acclimation potential. This plasticity may have helped the species to survive under the new conditions, allowing evolution through natural selection to take place. I found that the populations of the two thermal origins had diverged in SNP markers associated with warmer temperature, whereas divergence in selectively neutral markers was mainly related to geographical distance. Adaptation occurred from standing genetic variation, emphasizing the importance of genetic diversity and population size in enabling the persistence of populations. Changes in thermal sensitivity of growth and survival were subtle yet significant, and complied with theoretical models of thermal adaptation in ectotherms. At the community level, pre-adaptation to warmer conditions aided the native T. fluviatilis when competing with the alien Potamopyrgus antipodarum. However, interspecific competition limited the snails most in those traits favored under warming, highlighting the challenge of adapting to different selecting forces during global change.

The persistence of species and populations under climate change depends on several factors - plasticity allowing for initial survival, evolvability in allowing the genetic changes, and species interactions affecting the new ecological niches. The results of my thesis indicate that persistence under climate change is possible when these factors align, but the relative roles of ecology and plasticity may explain why there are so few observed instances of evolution in response to climate change.  

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 46 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1334
climate change, thermal adaptation, evolution, Baltic Sea, Biotest Basin, ecological interactions, biological invasions, phenotypic plasticity
National Category
Ecology Evolutionary Biology Zoology
Research subject
Biology with specialization in Population Biology
urn:nbn:se:uu:diva-271575 (URN)978-91-554-9448-3 (ISBN)
Public defence
2016-02-26, Lindahlsalen, Norbyvägen 18, Uppsala, 10:15 (English)
Available from: 2016-02-05 Created: 2016-01-11 Last updated: 2016-02-12

Open Access in DiVA

No full text

By organisation
Animal ecology
Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link