uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Impact of Porosity and Electrolyte Composition on the Surface Charge of Hydroxyapatite Biomaterials
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Show others and affiliations
2016 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 1, 908-917 p.Article in journal (Refereed) Published
Abstract [en]

The success or failure of a material when implanted in the body is greatly determined by the surface properties of the material and the host tissue reactions. The very first event that takes place after implantation is the interaction of soluble ions, molecules and proteins from the biological environment with the material surface leading to the formation of an adsorbed protein layer that will later influence cell attachment. In this context, the particular topography and surface charge of a material become critical as they influence the nature of the proteins that will adsorb. However, very limited information is available on the surface charge of porous substrates. Only until very recently was the determination of the zeta potential on porous membranes accurately determined. The goal of this work was to implement the previous findings for the determination of the zeta potential of a series of porous hydroxyapatite (HA) substrates and to assess how porosity affects the measurements. In addition, studies using various electrolytes were also performed to prove how the specific affinity of certain ions for HA can further impact surface charge. The results showed that all materials exhibited very similar external surface charge (approximately −23 mV), consistent with their almost identical topographies. However, the presence of interconnected pores underneath the sample surface resulted in an additional internal zeta potential that varied with the porosity content. Measurements with different electrolytes confirmed the selectivity of divalent ions for HA underlying the importance of testing biomaterials using relevant electrolytes.

Place, publisher, year, edition, pages
2016. Vol. 8, no 1, 908-917 p.
Keyword [en]
surface charge; zeta potential; streaming current; porosity; texture; hydroxyapatite; bone substitute ion adsorption
National Category
Natural Sciences Engineering and Technology Nano Technology
URN: urn:nbn:se:uu:diva-271614DOI: 10.1021/acsami.5b10404ISI: 000368563000108PubMedID: 26684866OAI: oai:DiVA.org:uu-271614DiVA: diva2:892757
EU, FP7, Seventh Framework Programme, GROWTH 291795VINNOVA, 2013-01260
Available from: 2016-01-11 Created: 2016-01-11 Last updated: 2016-03-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mestres, Gemma
By organisation
Microsystems Technology
In the same journal
ACS Applied Materials and Interfaces
Natural SciencesEngineering and TechnologyNano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 275 hits
ReferencesLink to record
Permanent link

Direct link